Before the Independent Hearing Panel Appointed by the Christchurch District Council

Under	the Resource Management Act 1991
In the matter of	a hearing of submissions on Plan Change 14 (Housing and Business Choice) to the Christchurch District Plan
	Cashmere Park Limited, Hartward Investment Trust and Robert Brown
	Submitter ID: 593

Evidence of Nicholas John Traylen

20 September 2023

Submitter's solicitors: Sarah Eveleigh Anderson Lloyd Level 3, 70 Gloucester Street, Christchurch 8013 PO Box 13831, Armagh, Christchurch 8141 DX Box WX10009 p + 64 3 379 0037 | f + 64 3 379 0039 sarah.eveleigh@al.nz

anderson lloyd.

Introduction

- 1 My name is Nicholas John Traylen.
- 2 I am a director and principal engineer at Geotech Consulting Limited. I have been in that position since August 1998.
- 3 I hold a Bachelor of Engineering (Civil) (Hons) from the University of Canterbury. I have over 35 years' experience as a geotechnical engineer.
- I was made a Fellow of Engineering New Zealand (FEngNZ) in March 2016; prior to that I was a Chartered Member of Engineering New Zealand (CMEngNZ), and a corporate Member of IPENZ (MIPENZ) since March 1992.
- 5 I have been a member of the Institute of Civil Engineers (MICE) (UK) and a Chartered Engineer (CEng) (UK) since May 1994.
- I am a member of the New Zealand Geotechnical Society (NZGS) and also the New Zealand Society for Earthquake Engineering (NZSEE).
- 7 Since the Canterbury Earthquake Sequence (CES), I have been a member of the Canterbury Engineering Advisory Group to MBIE, and have held various advisory roles with MBIE, CERA, CCC, ECan and the CEIT. I have undertaken numerous post-earthquake liquefaction assessments and geotechnical investigations.
- 8 I have carried out a subsurface site investigation and have prepared a geotechnical assessment supporting the submission of Cashmere Park Ltd, Hartward Investment Trust and Robert Brown, seeking to rezone the below sites (the Site) from Residential New Neighbourhood (RNN) and Rural Urban Fringe (RUUF) zones to Medium Density Residential Zone (MDRZ):
 - (a) 126 Sparks Road (Lot 1 DP 412488)
 - (b) 17 Northaw Street (Lot 2 DP 412488)
 - (c) 36 Leistrella Road (Lot 3 DP 412488)
 - (d) 240 Cashmere Road (Lot 23 DP 3217)
 - (e) 236 Cashmere Road (RS 41613)

- (f) 200 Cashmere Road (Lot 1 DP 547021)
- 9 I have visited the site on numerous occasions since 2011.
- 10 My full geotechnical report, dated 6 September 2023, is attached as Appendix A. This evidence summarises the key points for the Site.

Code of Conduct for Expert Witnesses

11 While this is not a hearing before the Environment Court, I confirm that I have read the Code of Conduct for expert witnesses contained in the Environment Court of New Zealand Practice Note 2023 and that I have complied with it when preparing my evidence. Other than when I state I am relying on the advice of another person, this evidence is within my area of expertise. I have not omitted to consider material facts known to me that might alter or detract from the opinions that I express.

Scope of evidence

- 12 I have prepared evidence in relation to the geotechnical suitability of the land for rezoning and eventual subdivision into residential lots.
- 13 I anticipate that at subdivision stage further investigations will be carried out to refine the assessment of liquefaction on the Site.
- 14 There are no issues relevant for the Site arising in the section 42A reports requiring further comment.

Executive summary

15 It is my opinion that the land is geotechnically suitable for rezoning for residential subdivision, and the eventual construction of residential housing.

Investigation undertaken

16 My site investigation has consisted of thirty-four cone penetrometer tests (CPT) to depths of 7 to 21 metres below ground level; sixteen hand auger boreholes (with associated scala penetrometer testing) to depths of 2 to 2.8 metres below ground level; two machine boreholes to 7 to 10 metres depth; a seismic dilatometer test to 10 metres depth; geophysical testing to a depth of 7 metres; and soils laboratory testing.

- 17 The testing regime complies with the Ministry for the Environment (MfE) document "Planning and Engineering Guidance for Potentially Liquefaction-Prone Land" (2017) as a 'Level C' assessment, being approximately 1 test per hectare, which falls within the required range of 0.1 to 4 per hectare for a 'Level C' investigation. (For a Plan Change on land where liquefaction is possible, a 'Level B' assessment or better is required. A 'Level C' assessment is better than a 'Level B' assessment). It also satisfies the investigation density requirements for a Plan Change outlined in the MBIE 'Module 2' document 'Geotechnical Investigations for Earthquake Engineering' (2021).
- 18 This testing has allowed me to assess the soil types across the Site; the strength of these soils; the water table depth; the liquefaction and lateral spread potential for the site; and the likely required foundations for future buildings on the site.

Subsoil characteristics

19 Ground conditions across the Site consist of interbedded loose to very loose liquefiable silts and sandy silts/silty sands, with some bands of medium dense clean sands, and also significant bands of non-liquefiable clayey materials. Most of the CPT probes terminated just past a lower sand or silt layer, refusing suddenly on a dense gravel layer some 9 to 12m below ground level. Below this are interbedded sands, gravels, and silts to 16-19m depth, then dense gravels to at least 21m depth.

Water Table

20 The water table (where full saturation of the soils occur) was found to be at between 1.3 and 1.8 metres below ground level.

Calculated liquefaction deformations

21 During the Canterbury Earthquake Sequence (CES, 2010 – 2011) Lidar measured ground deformations across the Site were quite modest, generally nil to 100mm, with some limited areas up to 200mm as shown in Figure 1 below.

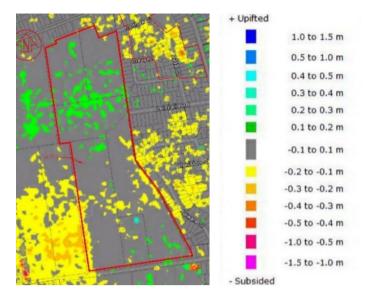


Figure 1 Lidar ground deformations, September 2010 to June 2011 Events

- 22 My own observations on the Site following the February 2011 earthquake event showed only minor surface manifestation of liquefaction, affecting less than 5% of the land.
- 23 All the land to the immediate east of the site is classified as MBIE Technical category 2 (**TC2**), as shown in Figure 2 below. The Lidar cumulative ground deformations to the immediate east of the Site are similar, if not slightly more intense, than this Site.

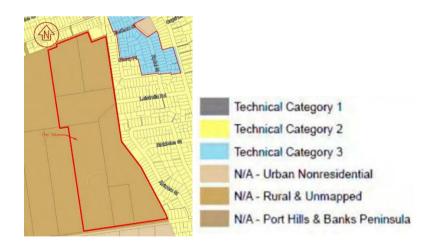


Figure 2 MBIE Technical Categorisation of Surrounding Land

A liquefaction assessment of all of the CPT data shows that in a large (500 year return period) earthquake (referred to as the Ultimate Limit State, or ULS earthquake for normal buildings) between 50mm and 260mm total settlement (averaging 95mm) might occur. It is noted that these theoretical

values significantly exceed what actually occurred on the site in the CES, showing the theoretical assessment to be likely quite conservative. Of that, between 50mm and 140mm occurs in the upper 10 metres of the soil profile (averaging 80mm over the site). The deformations in the upper 10 metres is an important metric as this is the part of the soil column that can contribute to potentially damaging deformations at the ground surface, as deformations deep in the soil profile only contribute to general, uniform settlement at the ground surface. (Deformations very close to the soil surface can also lead to surface rupture and soil ejecta.)

- For a moderate (100-year return period) earthquake the total settlements are 40-180mm (averaging 70mm), with 35 -100mm (averaging 60mm) in the upper 10 metres of the soil profile.
- For a smaller (25-year return period) earthquake (referred to as the Serviceability Limit State, or SLS, earthquake for normal buildings) the total settlements are 10-50mm (averaging 25mm), with 10-40mm (averaging 20mm) in the upper 10 metres of the soil profile.

Lateral spread

- 27 There are no significant waterways on or immediately adjacent to the Site that would give rise to a lateral spread hazard, although if there was a requirement to construct a stormwater detention basin then a localised lateral spread issue may be created. This can be relatively easily dealt with, by localised ground improvement to mitigate the new lateral spread hazard. This has been done recently near the southeastern area of the site with a series of shallow stone columns. I have also been involved on other similar projects where we used driven timber piles for this purpose, and where the hazard is due to a very shallow liquefiable layer, with excavation and replacement of the weaker soils with compacted hardfill.
- 28 In terms of the MfE categorisation, this land can be regarded as 'Liquefaction Damage is Possible - Medium Liquefaction Vulnerability'.
- 29 The MfE guidelines indicates that this means:

- Minor to Moderate quantities of ejected liquefied material at the ground surface (e.g. less than 25 percent of a typical residential site covered); and/or
- Moderate differential settlement of the ground surface (e.g. undulations 25–100 mm in height).
- No significant lateral spreading ground movement (e.g. ground cracks less than 50 mm wide may be present, but pattern of cracking suggests the cause is primarily ground oscillation or settlement rather than lateral spreading).
- Liquefaction causes moderate but typically repairable damage to buildings and infrastructure. Damage may be substantially less where liquefaction was addressed during design (e.g. enhanced foundations).
- 30 The assessed deformations and liquefaction hazard are generally consistent with an MBIE TC2 site, with some areas possibly being suited to a hybrid TC2 / TC3 foundation system.
- 31 Static bearing capacities (also taking into account static settlements) for foundations are in the order of 200 kPa, so suitable for standard TC2 foundation types.
- 32 I summarise the position for other natural hazards that might be geotechnical in nature below:
 - (a) The Site is not subject to erosion, there being no major waterways on or near it;
 - (b) The Site is flat lying and not adjacent to sloping ground and therefore there are no hazards from falling debris or slope instability;
 - (c) The Site is not in a Tsunami zone; and
 - (d) Volcanic and geothermal activity are not known hazards in the Canterbury Region.
- 33 Flooding is outside my area of expertise and I defer to the evidence of Stephany Pandrea.

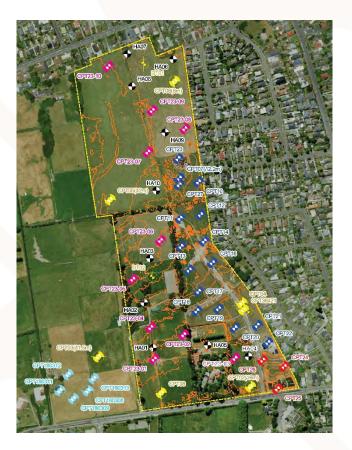
34 I acknowledge that experts must identify any knowledge gap that they are aware of and its potential implications in evidence.¹ Geotechnical engineering is a relatively young and continually evolving science. There are epistemic uncertainties in all aspects of geotechnical analysis, calculation and assessment. There are also aleatory uncertainties introduced by the necessarily low density of soil sampling that is carried out, in any geotechnical investigation. However, a comparison of my analyses to actual site performance has demonstrated that my calculated liquefaction outcomes are conservative (i.e. the site has performed better than theoretical calculations might suggest). Also, when comparing observed performance of the Site to that of adjacent TC2 land to the east (in Figure 1), it is quite apparent that on the whole the Site has performed better than that land to the east. Therefore I am very confident that the inherent uncertainties in geotechnical engineering do not undermine or detract from my conclusion, that the Site is suitable for rezoning as Medium Density Residential Zone.

Conclusion

- 35 The geotechnical investigation and assessment has demonstrated that the land is of only medium liquefaction vulnerability, and in general it is not subject to significant geotechnical hazards.
- 36 Therefore, from a geotechnical perspective it is my professional opinion that the Site is suitable for rezoning as Medium Density Residential Zone.

Nicholas John Traylen 20 September 2023

¹ Environment Court Practice Note 2023 at 9(f).



GEOTECH

CASHMERE FIELDS

REZONING

GEOTECHNICAL REPORT

Reference Number: 3933

Date: 6 September 2023

GEOTECH CONSULTING (NZ) LTD

3933 / September 2023

CONTENTS

OVER	VIEW SUMMARY	3
1.0	INTRODUCTION	4
2.0	DAMAGE OBSERVATIONS	4
3.0	THE SITE INVESTIGATION	5
3.1		
3.2 3.3	METHODOLOGY	-
3.4	GROUNDWATER	
3.5	Environmental Issues	
3.6	FLOOD LEVELS	8
4.0	INTERPRETATION	9
4.1 4.2 4.3 4.4	FINES CONTENT ANALYSIS LIQUEFACTION POTENTIAL LATERAL SPREAD STATIC BEARING CAPACITIES	10 13
5.0	RMA NATURAL HAZARDS	14
6.0	RECOMMENDATIONS	15
6.1	MBIE/MFE GUIDELINES	15
6.2	LIKELY TECHNICAL CATEGORY	-
6.3 6.4	LIKELY FOUNDATION CONSTRUCTION	
••••		
7.0	SUMMARY & CONCLUSIONS	
8.0	LIMITATIONS	
9.0	REFERENCES	19

- Appendix 1 Site Plan & Land Damage Records
- Appendix 2 CPT and Borelogs
- Appendix 3 Lab Data and C_{FC} Analysis
- Appendix 4 Liquefaction Profiles

OVERVIEW SUMMARY

Project Type:	Land Develo	oment		
Nature of Project:	Plan Change			
Investigation undertaken:	and scala per	- 15m depth, 4 bo netrometer tests to m depth, geophysi	o 2-2.8m depth, se	ismic dilatometer
Subsoil Characteristics:	with some ba bands of nor	loose to very loo ands of medium de n-liquefiable clayey n a lower sand or	nse clean sands, a / materials. Most o	nd also significant of the CPT probes
	on a dense g this in the bo	ravel layer some 9 reholes are interb hen dense gravels	to 12m below gro edded sands, grav	ound level. Below els and silts to 16-
Water table depth:	1.3m -1 <mark>.75</mark> m	(full saturation) d	epth.	
		SLS	U	ILS
Calculated Settlements:	Total 10-50mm (25mm avg)	Upper 10m 10 - 40mm (20mm avg)	Total 50 - 260mm (95mm avg)	Upper 10m 50 - 140mm (80mm avg)
	•	t a likely hazard bu	<mark>t the im</mark> position of	requirements for
Lateral Spread:		detention basins an nat will require mit		ely create a lateral
MBIE/MfE guidelines:	'Liquefaction	is Possible - Medi	um Liquefaction V	'ulnerability'
Technical Category:		d as TC2-like or Hy foundation design.	-	avior for the
Foundation options:	Shallow TC2- suitable.	type or TC2/TC3 H	lybrid foundations	s will likely be
Suitability for Rezoning:	Suitable for r	ezoning for reside	ntial subdivision.	

GEOTECHNICAL REPORT

Cashmere Fields Rezoning

1.0 INTRODUCTION

It is proposed to rezone a block of land that lies to the immediate west of the existing residential suburb of Hoon Hay. The (currently rural) block, consisting mainly of relatively flat farmland, is bounded by a strip of residential land along Sparks Road to the north, runs south (in a width of 300 – 600m) to Cashmere Road. To the west is further rural land; to the east are the suburban houses of Hoon Hay.

A series of geotechnical investigations have been carried out at the site as part of the assessment of the land for the proposed plan change (as well as for an existing subdivision on the land), and a detailed liquefaction assessment has been undertaken. This report outlines that assessment and the conclusions that can be drawn from it.

It is envisaged that at subdivision stage further investigations will be carried out to refine the assessment of liquefaction on the site, and to provide design parameters for any future subdivision.

2.0 DAMAGE OBSERVATIONS

Lidar data shows very little to only moderate cumulative ground deformations at the site from the events spanning from September 2010 to June 2011. Appendix 1 (figure SK2) shows the results of these damage observations.

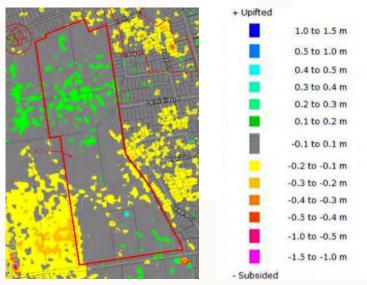


Figure 1 Lidar ground deformations, September 2010 to June 2011 Events

All the land to the immediate east of the site is classified as MBIE Technical category 2 ("TC2"); the Lidar cumulative ground deformations there (i.e. to the immediate east) are similar, if not slightly more intense, than those on this site. Our own observations on the site following the February 2011 earthquake event showed only minor surface manifestation of liquefaction, affecting less than 5% of the land.



Figure 2 MBIE Technical Categorisation of Surrounding Land

Appendix 1 contains summary information from the NZGD (drawing sheets 2 & 3).

3.0 THE SITE INVESTIGATION

3.1 Objectives

This site investigation data has been analysed to provide information about the composition, spatial relationships and geotechnical properties of the materials that underlie the site.

In particular the following information was sought:

- Definition of the quality and variability of the soils underlying the site.
- Water table depth.
- Liquefaction potential.
- Permissible likely foundation types.
- Site subsoil category.

3.2 Methodology

Thirty-four cone penetrometer tests ("CPT") have been carried out at the site between 2011 and 2023. The combined data for the CPTs range in depth from 9 metres to 15 metres below ground level (all refusing on dense gravels). Two dual tube boreholes have been drilled at the site, one in the west of the site and one in the north of the site, to a depth of 21 metres in each case. A seismic dilatometer test has been carried out to 10 metres in the central part of the site, as well as two boreholes to 7 - 10 metres depth. Some geophysical testing (i.e. shear wave velocity) has also been carried out to 7 metres depth at the site as part of a University research project. Sixteen hand augers with associated scala penetrometer tests to 2 - 2.8 metres depth have been drilled at the site as well.

The Ministry for the Environment (MfE) document "Planning and Engineering Guidance for Potentially Liquefaction-Prone Land" (2017) requires a 'Level B' assessment or better for a Plan Change on land where liquefaction is possible. The data acquisition for this report meets the requirements for a 'Level C' assessment (which is better than a 'level B' assessment), being approximately 1 test per hectare, falling within the required range of 0.1 to 4 per hectare for a 'Level C' investigation. This investigation also satisfies the density requirements for a Plan Change outlined in the MBIE document 'Geotechnical Investigations for Earthquake Engineering' (2021).

Further information regarding groundwater levels, ground deformations, levels of shaking, and observed ground damage during the Canterbury Earthquake Sequence was also retrieved from the New Zealand Geotechnical Database.

Appendix 1 (drawing sheet 1) has a plan showing the locations of the investigations that have been carried out to date.

3.3 Subsurface Conditions

The geological map for Christchurch indicates that the site is underlain by predominantly sand and silt overbank deposits (Springston Formation), of Holocene age.

The interpreted CPT probes show variable subsurface conditions. Generally, the soils consist of interbedded loose to very loose silts and sandy silts/silty sands, with some bands of medium dense clean sands (often about 1-2 metres thick, somewhere between 3 and 6 metres below ground level) and also significant bands of non-liquefiable clayey materials. Most of the CPT probes terminated in a lower

sand or silt layer prior to refusing suddenly on what is likely to be a dense gravel layer 9-12m below ground. Below this are interbedded sands, gravels, and silts to 16-19m depth, then dense gravels to at least 21m depth.

CPT traces and borelogs are included in Appendix 2.

3.4 Groundwater

Groundwater was observed during the hand auger investigations at 1.0 - 1.9m. Piezometer records from the site indicate that groundwater levels can fluctuate from 2m depth to ground level. The GNS Science Median Groundwater Surface Elevations from the Canterbury Geotechnical Database for this site indicate that the long-term median water table is 1.3m below ground surface.

While these levels are a useful guide to expected conditions during construction, another aspect that can be considered for liquefaction analysis purposes is the degree of saturation of the soils that lie below the apparent water table. If a soil is not 100% saturated then it is unable to liquefy.

Typically, it is assumed that any soil below the water table is 100% saturated. However, in a number of separate liquefaction research projects in Christchurch and also overseas where cross-hole geophysical testing has been undertaken, the measured P-wave velocity (" V_P ") profiles have shown that in fact it is not uncommon for soils below the water table to be unsaturated. V_P testing was undertaken at Cashmere Fields on two separate occasions. Testing in December 2013 showed that the soils were not saturated in the upper 2.7m of the soil profile. Testing in the same location in late March 2017 showed the depth to complete saturation to be over 8 metres. Therefore, adopting a design depth of 1.3m if used for liquefaction analyses would be conservative.

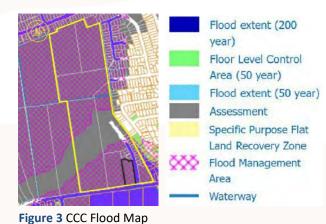
We have examined core photos from the borehole drilled at BH 38197. This shows a brown colouration to the soils to a depth of 1.75m, below which all of the soils are grey in colour. The grey soils are from the same geological origin as the brown ones, but the grey colouration indicates that they have not been exposed to oxygen in the long term. In other words, the position of the change in colour indicates the long term average (saturated) groundwater table.

Therefore, for liquefaction analysis purposes we have set a design median groundwater level at 1.75m depth.

3.5 Environmental Issues

Environmental engineering is beyond the scope of our expertise, however we have checked the Environment Canterbury 'Listed Land Use Register' (LLUR) (<u>http://llur.ecan.govt.nz/</u>) and found that (on the day accessed, 15 June 2023) it advises for this site (excluding the already developed area in the eastern side) the following:

"The Listed Land Use Register does not currently have any information about a Hazardous Activities and Industries List site on this land parcel"


For the area of land within this parcel that has already been (recently) developed as a subdivision (and therefore already dealt with), the LLUR reports the following:

HAIL activitie	25:	
CT232572	I - Any other land	
Sites:		
SIT238095	Below guideline values – Residential	Farm Pit and dwelling areas
Investigation	ns: (200 Cashmere Road, Hoon Hay, Christchurch)	
INV232671	Site Remedial Action Plan Remedial Action Plan (RMA	25 Mar 2019
	2018 1921)	
INV235799	Site Validation Report (SVR) RMA/2018/1921	24 May 2019
INV214835	Detailed Site Investigation Ground Contamination	3 Aug 2018
	Assessment; Preliminary and Detailed Site	
	Investigation.	

3.6 Flood Levels

The Christchurch City Council flood hazard maps at:

<u>https://www.ccc.govt.nz/services/stormwater-and-drainage/flooding/floorlevelmap</u> were accessed on 15 June 2023. The CCC system shows that much of the site, with the exception of some higher ground in the central portion of the land, is within the modelled 50-year and 200-year flood extents, and is within the Flood Management Area ("FMA"). The City Council should be referred to for further information.

GEOTECH CONSULTING (NZ) LTD

4.0 INTERPRETATION

The gathered data (as described in the previous section) has been analysed for dynamic and static conditions as follows:

4.1 Fines Content Analysis

For routine liquefaction analysis it is common to use soil fines contents ('FC') that are inferred from the CPT data, rather than actual FC data from laboratory testing. This can affect the outcome of the analysis to varying degrees. The more robust way to carry out an analysis is to use detailed laboratory-measured fines contents from actual soil samples. However, the cost of doing this can be relatively high, and often not warranted on small projects. The CPT data-derived fines content formulation uses a 'best fit' line from a regression of historical FC and Ic data (Ic is a parameter derived from CPT data) – see Figure 4 below.

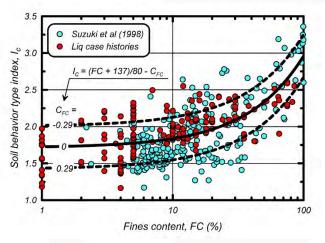


Figure 4 - Figure 2.11 from Boulanger & Idriss (2014)

The data is however quite scattered, and a particular site might not necessarily be best represented by the 'best fit' line ($C_{FC} = 0$ in Figure 2). In Christchurch it is not uncommon for site data to fall well below the best fit line, for example. Other correlations can be used by employing an appropriate site-specific 'fines correction factor' (" C_{FC} "). It is often found in Christchurch that a C_{FC} of 0.2 – 0.3 can be appropriate.

Four samples were retrieved from the liquefiable soils at the Cashmere Fields site and tested for fines content, as part of a silty soils research project in 2013. The fines content tests when regressed against the CPT-derived Ic parameter, showed that a C_{FC} parameter of 0.23 is appropriate. (When additional data is added from adjacent properties, the average C_{FC} is even higher.)

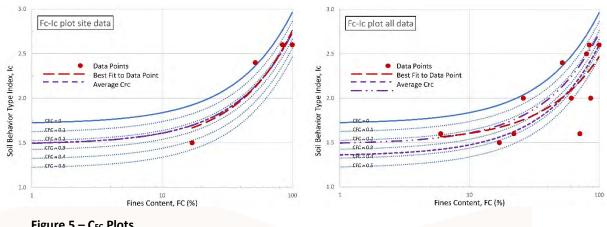


Figure 5 – C_{FC} Plots (a) site specific data only.

(b) additional data from neighbouring sites

4.2 Liquefaction Potential

The saturated silty and sandy materials below the water table have some potential for liquefaction in a large earthquake. The CPT profiles have been analysed using the method of Boulanger & Idriss (2014); and free field settlements assessed using the method of Zhang et al (2002). A 'fines correction' coefficient (C_{FC}) of 0.23 was adopted for the analysis, as described in the previous section. Additionally, given the good performance of the site in the Canterbury Earthquake Sequence as discussed in Section 2, a probability of liquefaction threshold, P_L, of 50% was adopted.

For the design input ground motion accelerations, we have adopted the PGAs (peak ground accelerations) recommended by MBIE, which is an SLS event (at M7.5) of 0.13g, a further SLS event (at M6) of 0.19g, and at ULS 0.35g (M7.5) for an IL2 (importance level 2) building. The SLS event at 0.19g/M6 was found (as is almost always the case) to be the dominant SLS event.

From the CPT data analyses we calculate Ultimate Limit State ('U.L.S.') theoretical post liquefaction free-field ground settlements at the site of up to 140mm in the upper 10m of the soil profile, averaging 80mm, and 260mm for the full depth of CPTs (but less than 120mm for all but one CPT location). We have also calculated liquefaction potential and ground settlements from the smaller Serviceability Limit State ('S.L.S.') – this indicates ground settlements of up to 40mm in the upper 10m of the soil profile and 50mm for the full depth profiles.

Additionally, we have assessed the 'Liquefaction Severity Number' (LSN) for each of the liquefaction cases.

		iquefaction In 00 years (ULS)			100 years			25 years (SLS)		
	0.35g/M7.5				0.3g / M6			0.13g / M7.5, 0.19g / M6		
	Groun	ound Settlement		Ground Settlement				Ground		
CPT I.D.		(mm)		(mm)			Settlement (mm)			
	Total	Upper 10m	LSN	Total	Upper 10m	LSN	Total	Upper 10m	LSN	
СРТ 02	257	137	35	182	102	26	51	27	7	
СРТ 03	109	107	22	87	86	17	29	29	5	
СРТ 04	96	75	14	106	83	16	23	17	3	
CPT 05	93	74	16	87	73	15	42	37	7	
СРТ 06	52	52	14	47	47	12	11	11	3	
СРТ 07	53	50	12	48	47	11	15	15	3	
CPT 08	104	104	23	75	75	16	22	22	4	
CPT 36421	54	52	11	42	41	8	19	19	4	
CPT 10	98	90	17	88	84	15	36	35	6	
CPT 11	99	78	16	78	60	13	31 22 3		3	
CPT 12	79	62	14	63	48	11	29	22	4	
CPT 13	81	64	18	58	42	11	21	14	3	
CPT 14	120	75	20	78	52	14	48	36	9	
CPT 15	99	99	27	60	60	16	10	10	3	
CPT 16	106	86	22	80	69	17	23	20	5	
CPT 18	81	81	16	57	57	12	16	16	3	
СРТ 19	86	85	15	48	48	9	12	12	2	
CPT 20	101	101	20	80	80	15	32	32	6	
CPT 21	92	88	21	77	73	17	37	34	6	
CPT 22	78	70	15	56	50	11	26	23	4	
СРТ 24	114	47	11	77	36	8	23	13	2	
CPT 25	101	98	20	55	54	12	11	11	2	
CPT 26	66	66	14	47	47	10	16	16	3	
CPT 27	80	75	15	68	65	13	20	19	4	
CPT 23-01	107	96	17	72	65	11	23	21	3	
CPT 23-02	73	73	11	60	60	10	22	22	4	
CPT 23-03	164	101	25	94	66	16	24	19	4	
CPT 23-04	102	100	23	79	78	18	34	30	7	
CPT 23-05	81	49	13	47	36	9	13	11	2	
CPT 23-06	51	51	13	46	46	12	18	18	4	
CPT 23-07	100	100	22	87	87	20	26	26	5	
CPT 23-08	52	52	17	39	39	8	8	8	2	
CPT 23-09	94	94	22	77	77	17	20	20	4	
CPT 23-10	48	48	16	40	40	13	11	11	3	

Page 12 of 19	Page	12	of	19
---------------	------	----	----	----

Design Event	Design Ground	Ground Settlement		LSN
Design Lvent	Acceleration	Total	Upper 10m	LJIN
500 years (U.L.S.)	0.35g / M7.5	50 - 260mm	50 - 140mm	11-35
500 years (0.L.S.)	0.358 / 1017.5	(95mm)	(80mm)	(18)
100 years	0.3g / M6	40 - 180mm	35 - 100mm	8-26
100 years	0.5g / 100	(70mm)	(60mm)	(14)
$2E_{\text{MODES}}(S \mid S)$	0.13g / M7.5, 0.19g / M6	10-50mm	10 - 40mm	2-9
25 years (S.L.S.)	0.13g / 1017.5, 0.19g / 1016	(25mm)	(20mm)	(4)

Table 2 – Results Summary

(values in brackets are averages)

The LSN values are a rough guide to the degree of ground surface damage that might be expected. The general descriptors are as follows in Table 3 (taken from the NZGS Module 3 document, 'Investigation, Assessment and Mitigation of Liquefaction Hazards'):

Performance Level	Effects	Characteristics and Consequences	Characteristic LSN
LO	Insignificant	No significant excess pore water pressures (no liquefaction).	<10
L1	Mild	Limited excess pore water pressures; negligible deformation of the ground, and small settlements.	5-15
L2	Moderate	Liquefaction occurs in layers of limited thickness (small proportion of the deposit, say 10 percent or less) and lateral extent; ground deformation results in relatively small differential settlements.	10 - 25
L3	High	Liquefaction occurs in significant portion of the deposit (say 30 percent to 50 percent) resulting in transient lateral displacements, moderate differential movements, and settlement of the ground in the order of 100mm to 200mm.	15 - 35
L4	Severe	Complete liquefaction develops in most of the deposit resulting in large lateral displacements of the ground, excessive differential settlements and total settlement of over 200mm.	>30
L5	Very Severe	Liquefaction resulting in lateral spreading (flow), large permanent lateral ground displacements and/or significant ground distortion (lateral strains/stretch, vertical offsets and angular distortion).	

Table 3 – General Performance levels for Liquefied Deposits

The LSN values assessed at ULS levels of shaking indicate 'moderate' to 'high' effects. For the SLS case the assessed effects are 'insignificant' to 'mild'.

Work by Bradley & Hughes (2012) indicates that in the M6.2 February 2011 event, this site was subject to a median PGA of 0.46g, which scales to an equivalent 0.32g from a 'standard' M7.5 event (i.e. close to a ULS event) and is well in excess of a 100 year 'ILS' event. If the 10-percentile ground motion is considered, this ground motion scales to an equivalent 0.20g from an M7.5 event (i.e. equivalent to a 100-year ILS design event). Similarly, the September 2010 event (0.25g from M7.1) 10-percentile motion scales to an equivalent 0.14g from an M7.5 event (i.e. in excess of an SLS event).

From this we can conclude that the site has been 'well tested' at SLS levels of shaking and ILS shaking.

4.3 Lateral Spread

Lateral spread is the post-liquefaction movement of either level liquefied ground towards a free edge or of sloping liquefied ground downhill. It often occurs along riverbanks and shorelines, and ground deformation is often expressed as extensional fissures. No instances of lateral spread were observed as a result of the Canterbury Earthquake Sequence and in its current state we do not anticipate a lateral spread hazard for this land. However, any requirements imposed on future subdivisions on this land for stormwater detention basins or the like will likely result in the creation of a localised lateral spread risk that will need to be mitigated at the time of construction.

4.4 Static Bearing Capacities

In the limited number of hand augers carried out to date, below the topsoil layer, scala penetrometer testing averages in the order of 50mm per blow (with some variation across the site), which indicates an ultimate bearing capacity of 200 kPa. More extensive testing will be required at subdivision and building consent stages to confirm this.

5.0 RMA NATURAL HAZARDS

5.5.1 Erosion

There are no major waterways adjacent to this subdivision. If a swale is constructed, the flow quantities and velocities are likely to be small and will not cause erosion issues.

5.5.2 Falling Debris

The site is flat and not adjacent to any sloping ground; therefore danger from falling debris is not an issue at this site.

5.5.3 Subsidence

The land is regarded as TC2-like or in some areas 'TC2-3 Hybrid' in its performance with regard to foundation design (see section 6.2). Penetrometer testing has largely shown reasonable bearing capacities for shallow foundations, and investigations have not detected any areas of uncontrolled fill or significant organic deposits. If suitable foundations are constructed, then structures will meet the requirements of the building code.

5.5.4 Flooding

This aspect is discussed in section 3.6 of the report. Suitable floor levels will be set in consultation with the Christchurch City Council.

5.5.5 Instability

The site is flat lying and therefore slope instability is not an issue for the subdivision under static conditions.

5.5.6 Volcanic and Geothermal Activity

These are not recognised risks at this site as there are no known active volcanic or geothermal areas in or near Canterbury.

5.5.7 Fire

This is beyond the scope of our expertise, however we note that the site is serviced by the Spreydon Fire Station, located approximately 3.8 km away by road.

5.5.8 Wind

This is beyond the scope of our expertise, however we note that NZS 3604 would suggest that this site is subject to 'high' wind loads.

5.5.9 Tsunami

The site is well outside any designated Tsunami evacuation zones.

6.0 RECOMMENDATIONS

Based on the information contained in section 3, and the data interpretations of section 4, we make the following recommendations for this site:

6.1 MBIE/MfE guidelines

In terms of the 2017 MBIE/MfE guidelines (Planning and Engineering Guidance for Potentially Liquefaction-Prone Land) we have carried out the equivalent of a 'Level C' (i.e. a detailed area-wide) assessment, and this land is classified as 'Liquefaction is Possible - Medium Liquefaction Vulnerability'.

6.2 Likely Technical Category

In considering the likely future land performance at this site we have considered the following aspects:

- Low levels of damage were observed after the September and February earthquakes.
- As concluded in section 4.2, the site has been 'well tested' at SLS levels of shaking and ILS shaking, and possibly near to ULS levels of shaking. Ground damage in a future SLS or ILS event is therefore unlikely to significantly exceed what is already evident on the site (which is relatively minor).
- Research into the over-prediction of liquefaction deformations (which utilised data from the Cashmere Fields site) shows that soil profiles that consist of highly interbedded deposits with few layers of clean sands, and having liquefiable layers that are predominantly silty sands that lack vertical connectivity between liquefiable layers, will likely perform better than the standard analysis methods would predict (Cubrinovski et al, 2017). The soil profiles at Cashmere Fields are of this nature.
- The adjacent suburb is all TC2, but Lidar settlements there from the Canterbury Earthquake Sequence are, on the whole, a little worse than at Cashmere Fields.

Therefore, based on the CPT-based assessment the land, and backed up by its performance in the Canterbury Earthquake Sequence, we advise that the Cashmere Fields land in its current state can be characterised by Technical Category 2 ("TC2") performance. A limited number of CPTs did show slightly worse theoretical performance under ULS conditions, and additional investigations at subdivision stage may also find some areas that indicate potentially worse performance – but

given that SLS performance is uniformly good across the entire site, the worst outcome is likely to be some areas designated as TC2/TC3 Hybrid in terms of foundation design – in other words, 'TC2', once a modest gravel raft has been constructed for a TC2 slab on grade foundation.

6.3 Likely Foundation Construction

For residential buildings, TC2-type foundation construction likely will be suitable for much of the land here. This typically consists of a TC2 waffle slab or monolithic foundation mat for concrete floors, however other options are available (refer to the MBIE Guidelines for residential construction). For timber floors, shallow piles as per NZS 3604 are permissible (for a 'Type A' dwelling), or a well reinforced ring foundation (as per figure 4a in the MBIE guidelines), with internal shallow piles ('Type B' dwelling).

Where areas of TC/TC3 Hybrid performance are found, these TC2 waffle slabs will need to be underlain with a 600mm thick layer of reinforced compacted gravels.

6.4 Seismic Category

The consistency and depth of the alluvial formations underlying this site makes it a 'Class D' site in terms of the seismic design requirements of NZS1170.5:2004.

7.0 SUMMARY & CONCLUSIONS

Ground conditions consist of interbedded loose to very loose silts and sandy silts/silty sands, with some bands of medium dense clean sands, and also significant bands of non-liquefiable clayey materials. Most of the CPT probes terminated in a lower sand or silt layer prior to refusing suddenly on a dense gravel layer some 9 to 12m below ground level. Below this are interbedded sands, gravels, and silts to 16-19m depth, then dense gravels to at least 21m depth.

Liquefaction assessments and site performance in the 2010-2011 Canterbury Earthquake Series indicate minor land deformations at SLS and ILS levels of shaking, and moderate deformations at ULS. The land is assessed as likely having TC2-like performance, with some areas that may be akin to TC2/TC3 hybrid performance.

In terms of the 2017 MBIE/MfE guidelines (2017) this land is classified as 'Liquefaction is Possible - Medium Liquefaction Vulnerability'

It is my opinion that the land is geotechnically suitable for rezoning for residential subdivision and the construction of housing. Further ground investigations will be needed at subdivision consent stage as well as building consent stage.

Yours faithfully,

Geotech Consulting Ltd per:

VISIa

Nick Traylen BE(Civil) (Hons) FEngNZ CPEng MICE CEng CPEng 119170

8.0 LIMITATIONS

This report has been prepared solely for the benefit of, and under specific instruction from Cashmere Park Ltd as our client with respect to the brief, for use for this specific project. The reliance by other parties on the information or opinions contained in the report shall be at such parties' sole risk.

Recommendations and opinions (not to be construed as guarantees) in this report are based on data from boreholes and probings, including data provided by others. The borelogs are an engineering interpretation of the subsurface conditions. The nature and continuity of subsoil conditions away from the test locations are inferred and it must be appreciated that actual conditions could vary from the assumed model.

Environmental engineering is not within our area of expertise and therefore others will need to be consulted on such matters as contaminated ground issues.

During excavation and construction, the site should be examined by an Engineer or Engineering Geologist competent to judge whether the exposed subsoils are compatible with the inferred conditions on which the report has been based. It is possible that the nature of the exposed subsoils may require further investigation, and the modification of any design work that may have been based on this report.

It is important that Geotech Consulting Ltd is contacted if there is any variation in subsoil conditions from those described, as well as any variation in the property damage discussed in this report, as it may affect opinions expressed and any design parameters recommended in this report.

Regulatory and insurance issues may arise from some of the recommendations in this report; the client should seek independent advice on these aspects. This opinion is not intended to be advice that is covered by the Financial Advisers Act 2010.

9.0 REFERENCES

Boulanger, R.W., Idriss, I.M. (2014) "CPT and SPT based Liquefaction Triggering Procedures" UCD Report UCD/CGM-14/01

Bradley, B., Hughes, M. (2012) "Conditional Peak Ground Accelerations in the Canterbury Earthquakes for Conventional Liquefaction Assessment" *Technical Report for Department of Building and Housing*

Cubrinovski, M., Rhodes, A., Ntritsos, N., Van Ballegooy, S. (2017) "System Response of Liquefiable Deposits" *Proc.* 3rd International Conference on Performance-based Design in Earthquake Geotechnical Engineering (PBD-III)

Ishihara, K. (1985) "Stability of Natural Deposits During Earthquakes", Proc. 11th International Conference on Soil Mechanics and Foundation Engineering, pp 321-376

Ministry of Business Innovation and Employment (2012): "Repairing and Rebuilding Houses Affected by the Canterbury Earthquake Sequence" *dated December 2012*

Ministry of Business Innovation and Employment and Ministry for the Environment (2017) "Planning and Engineering Guidance for Potentially Liquefaction-Prone Land" dated December 2012

Zhang,,G., Robertson. P.K., Brachman, R.W.I. (2002) "Estimating Liquefaction-Induced Ground Settlements from CPT for Level Ground", Can. Geotech. J. (39), 1168-1180.

Appendix 1

Site Plan & Land Damage Records

		HA07 HA06 D01 HA08 DFDC(8m) OFD200 DFD200 DFD200 OFD200 OFD200 OFD200 OFD200 OFD200 OFD200 OFD200	
		HA10 CPT05(12m) CPT01 CPT01 CPT01 CPT01 CPT01 CPT02 CPT01 CPT02 CPT01 CPT02 CPT01 CPT02 CPT03 CPT03	A SA421 CET21
New Zealand Aerial Imagery Source: LINZ (2021-2022) NZTM2000			
	PROJECT: CASHMERE FIELDS REZONING	DRAWING: SITE INVESTIGATION PLAN	ISSUE DATE AMENDMENT DETAILS

Legend

Investigation Points

Stage 1 CPT

Stage 1 Borehole

Stage 2 CPT

Stage 2 Hand Auger

Stage 3 CPT

NZGD CPT

📀 May 2023 CPT

Hay 2023 Hand Auger

Non-Developed Land

Reserve & other land not to be developed for housing lots Sand Boils



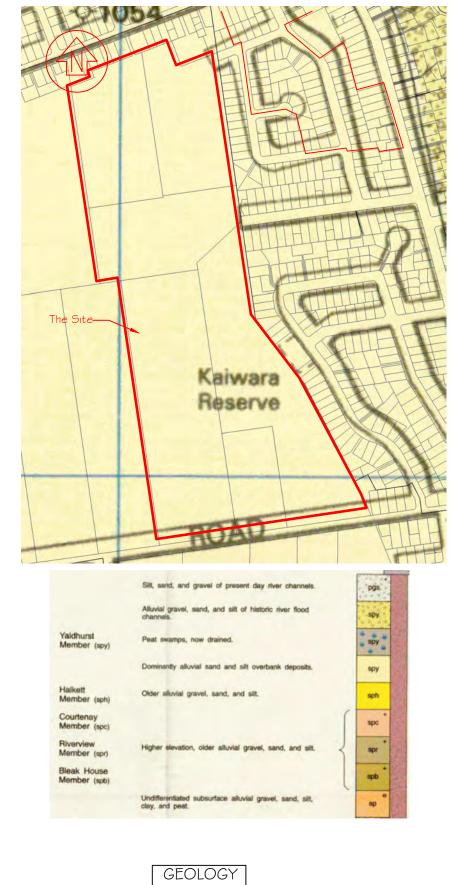
 100
 200
 300
 400
 500 m

 SCALE.

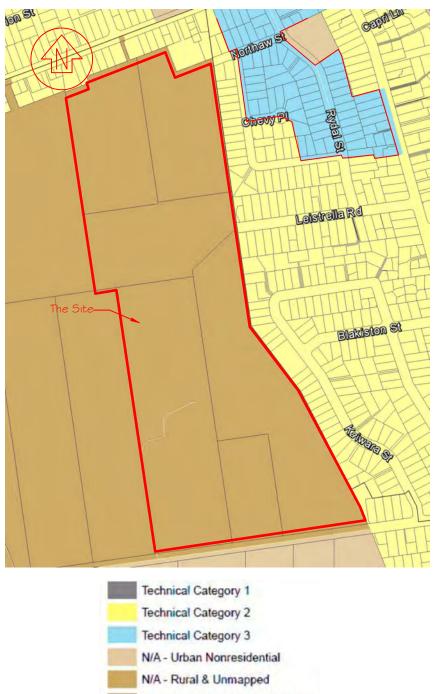
 1:5,000@A3
 DRAWN: SAS DATE: 31/05/2023 CHECKED: RBW

 PROJECT NO.
 SHEET NO.
 ISSUE

 3933
 1
 A


consulting ltd

PERTY C	BSERVATIONS	FEB 20		
СНКО	© COPYRI	GHT RESE	ERVEI)
	scales: 1:7500 @ A3	DESIGNED DRAWN	NJT NJT	/22 /22
	PROJECT No.	CHECKED SHE	ET No.	ISSUE

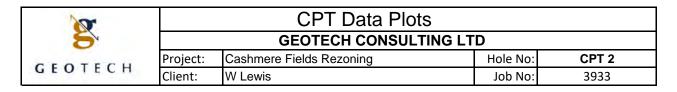

3933

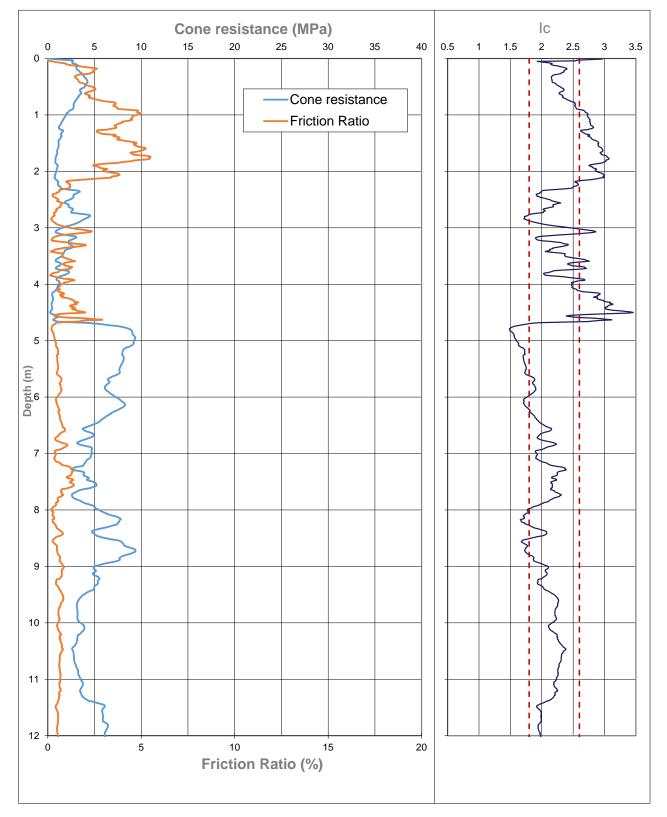
2

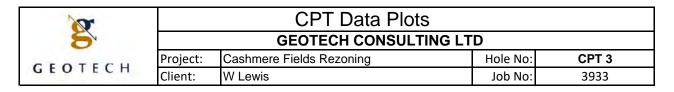
А

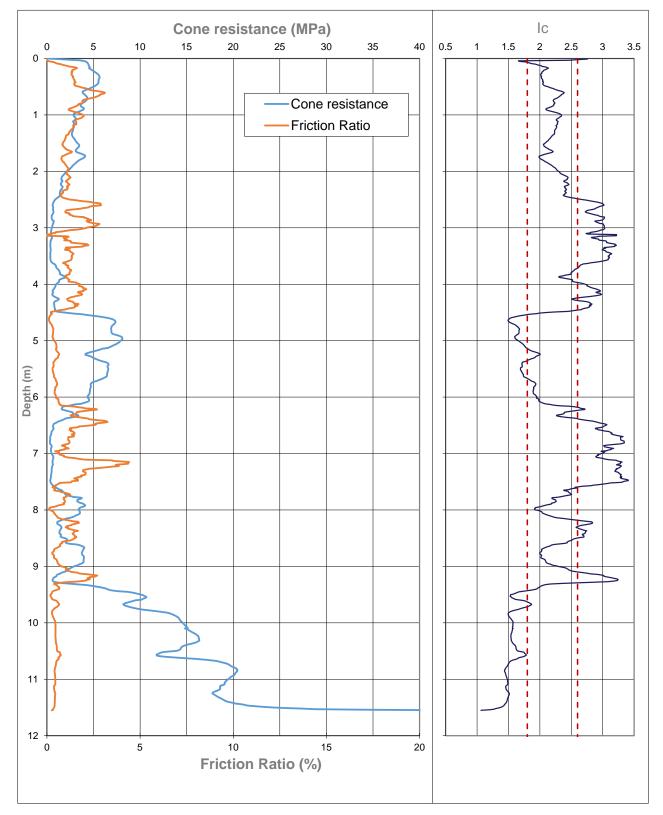
G E O T E C H

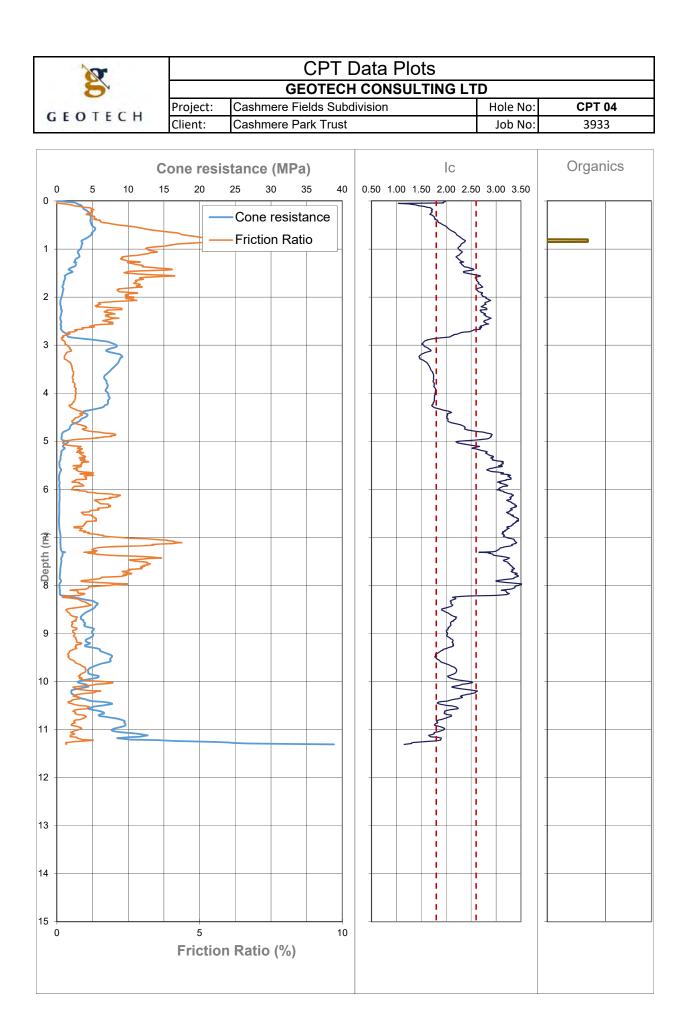
N/A - Port Hills & Banks Penins

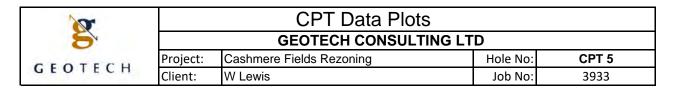

GEOLOG I:7500	Y	MBIE TECHNICAL CATEGORI	ES		
N	PROJECT:			DATE	A
	CASHMERE FIELDS REZONING	GEOLOGY AND TECHNICAL CATEGORIES		\vdash	
D					

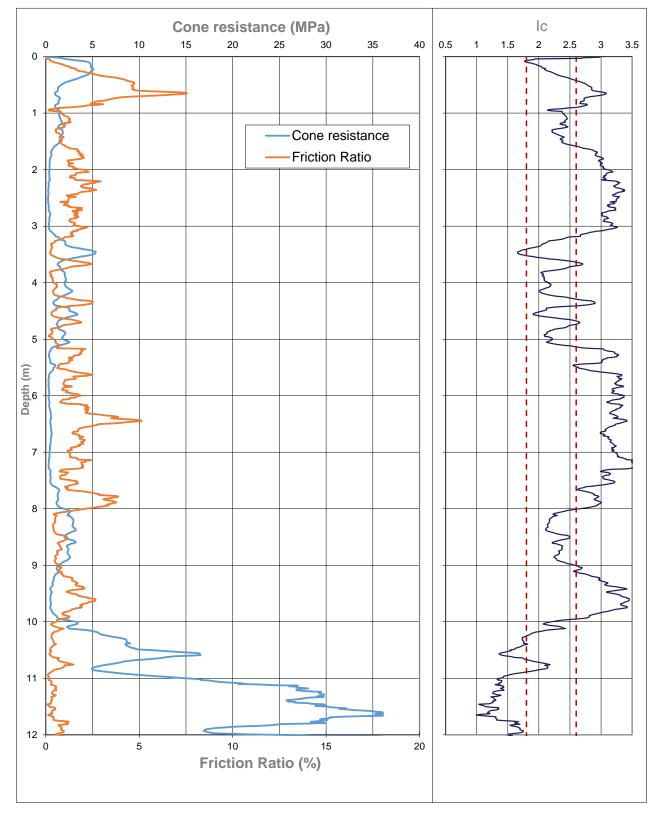

SUE	DATE	AMENDMENT DETAILS

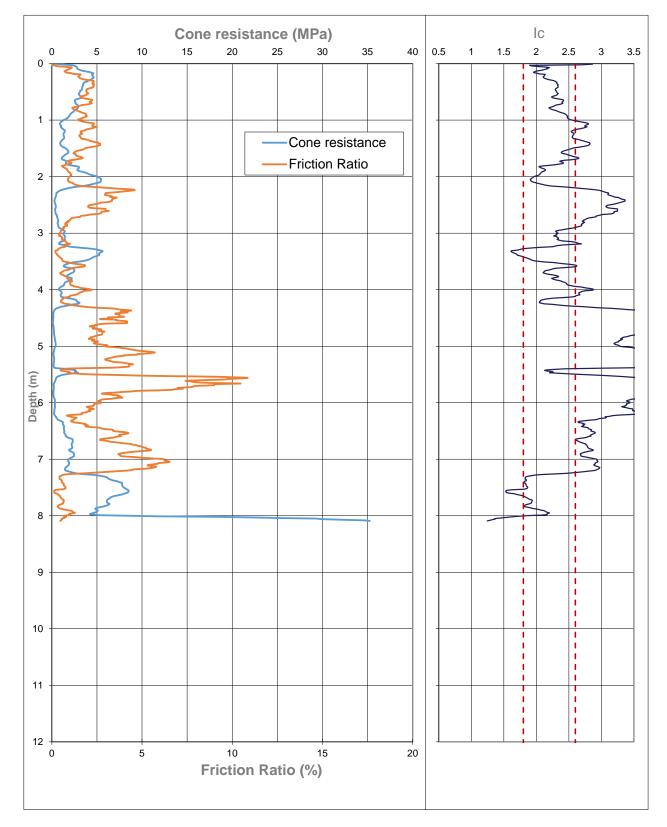

СНКД	-						
	© COPYRIGHT RESERVED						
	SCALES:	DESIGNED	NJT	11/22			
	I:7500 @ A3	DRAWN	NJT	11/22			
		CHECKED					
	PROJECT No.	SHEET No.		ISSUE			
	3933	3					
	5955			А			

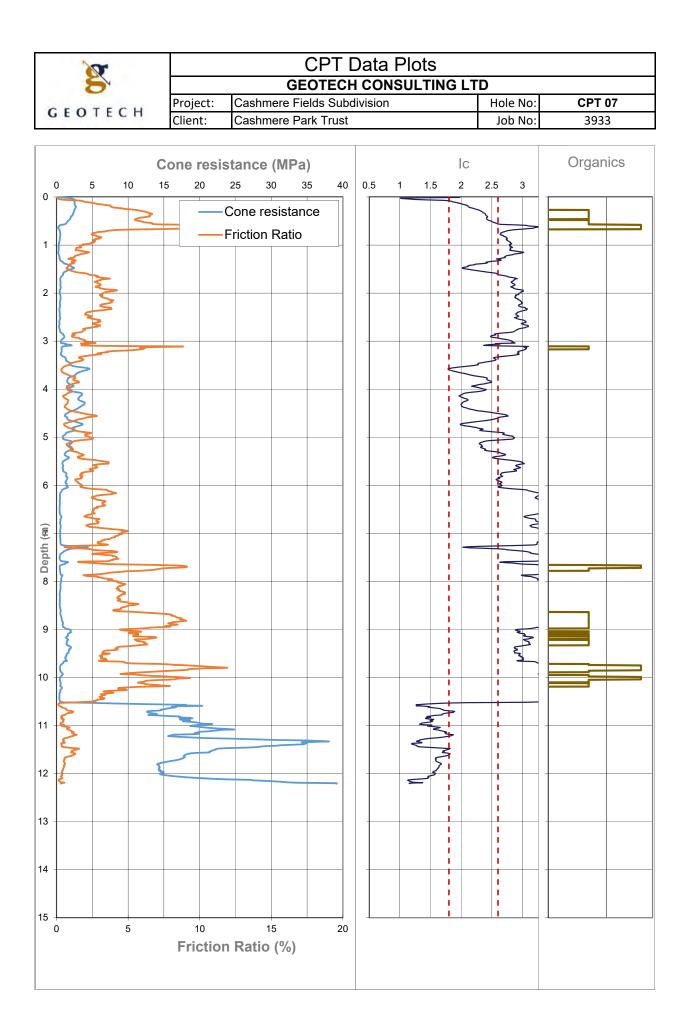

Appendix 2

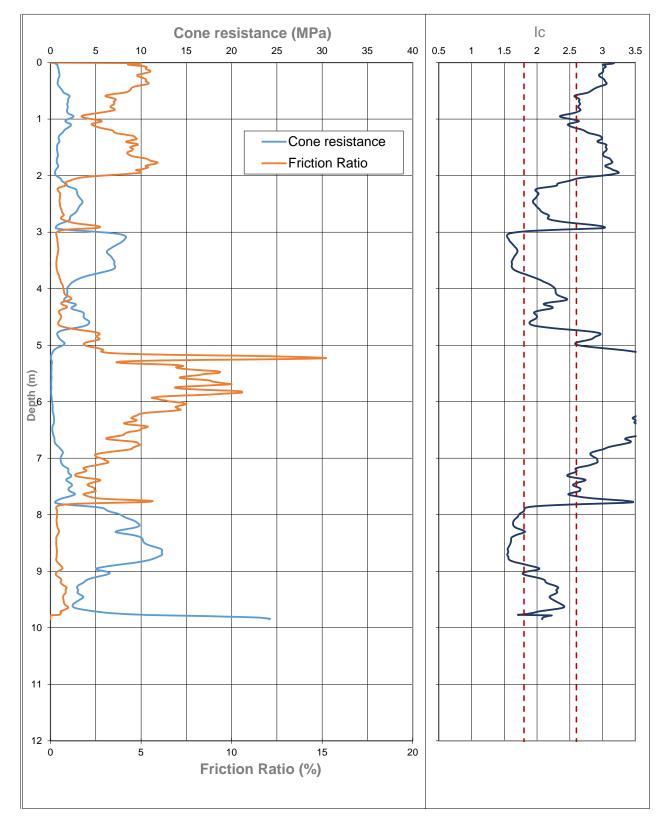

CPT Profiles & Borelogs

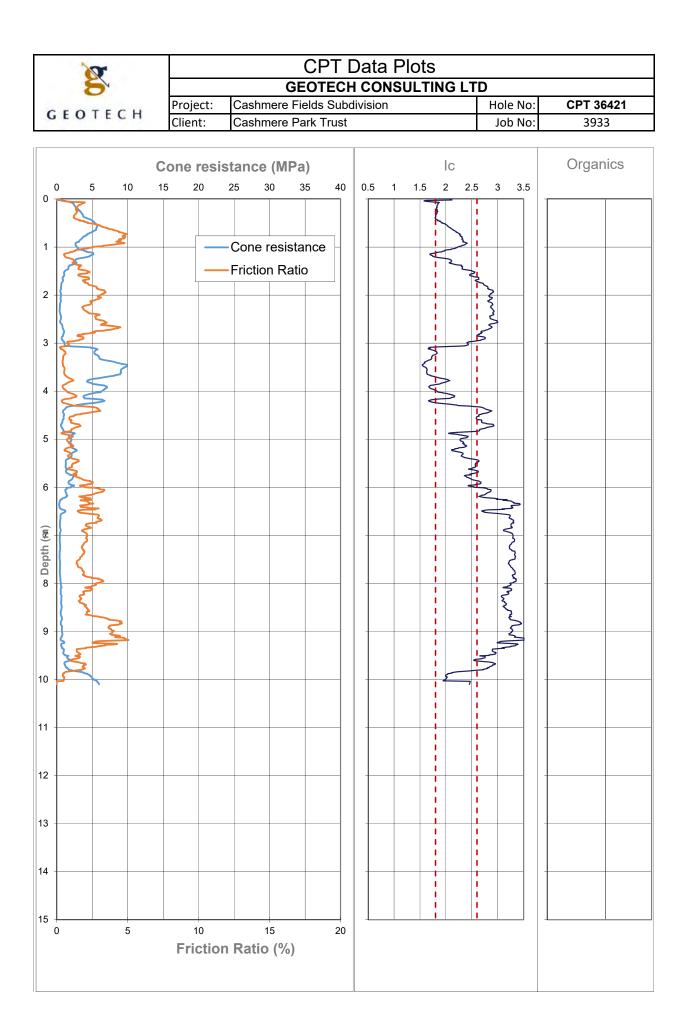


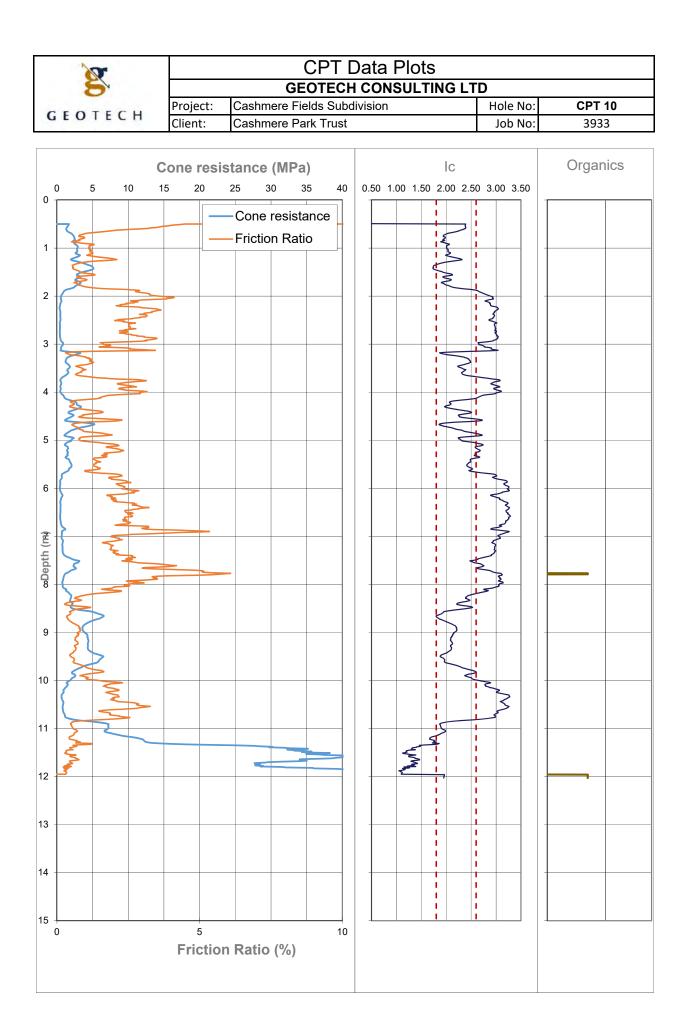


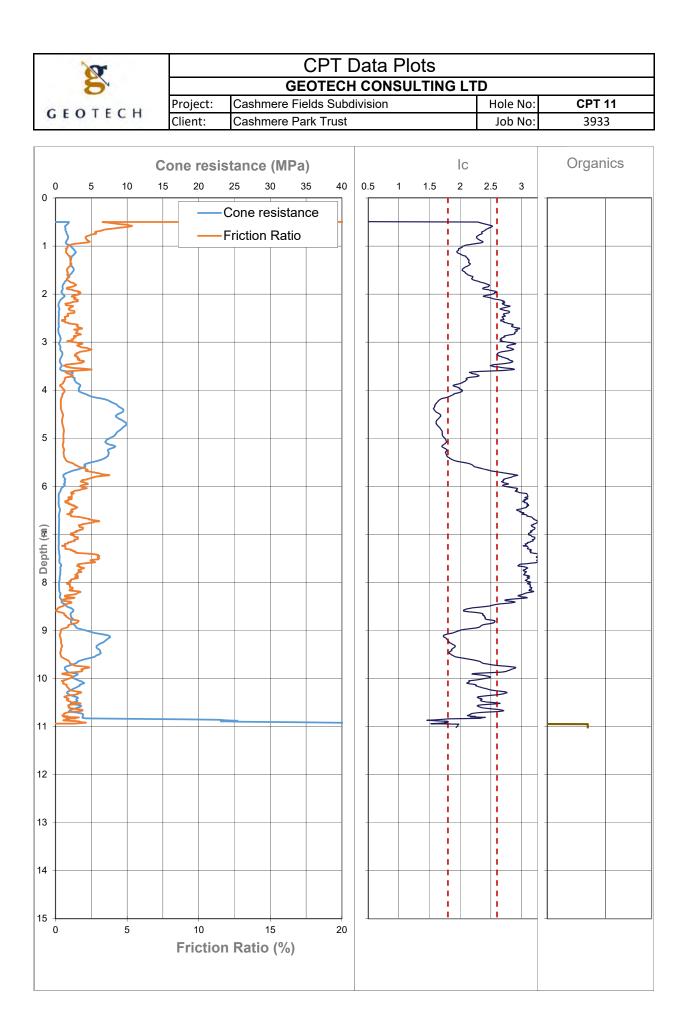


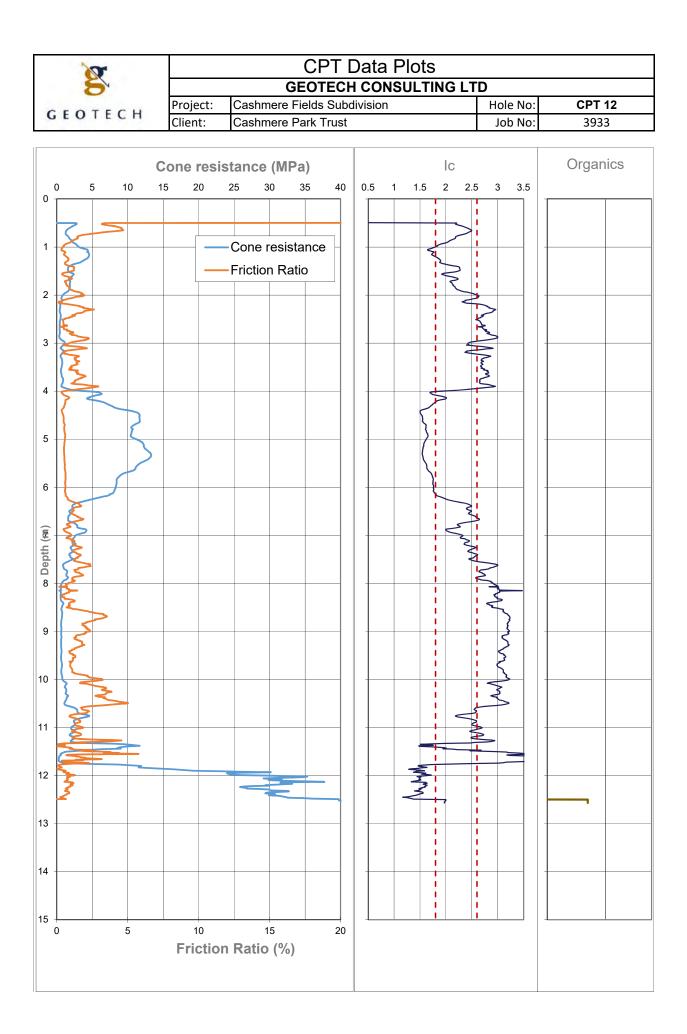


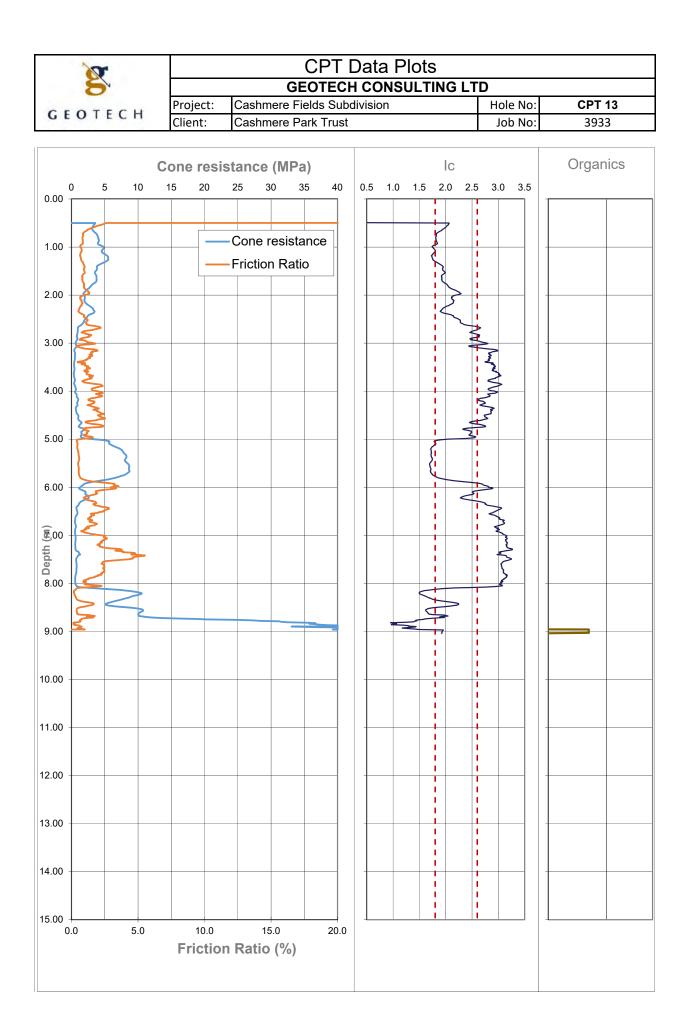


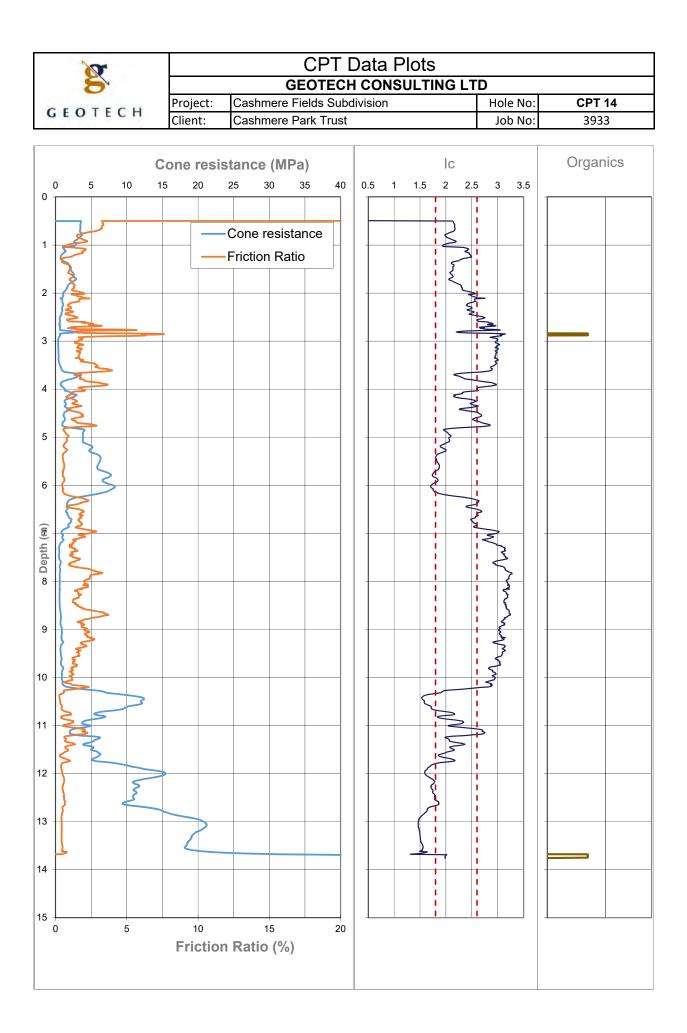

6	CPT Data Plots					
5	GEOTECH CONSULTING LTD					
GEOTECH	Project:	Cashmere Fields Rezoning	Hole No:	CPT 6		
	Client:	W Lewis	Job No:	3933		

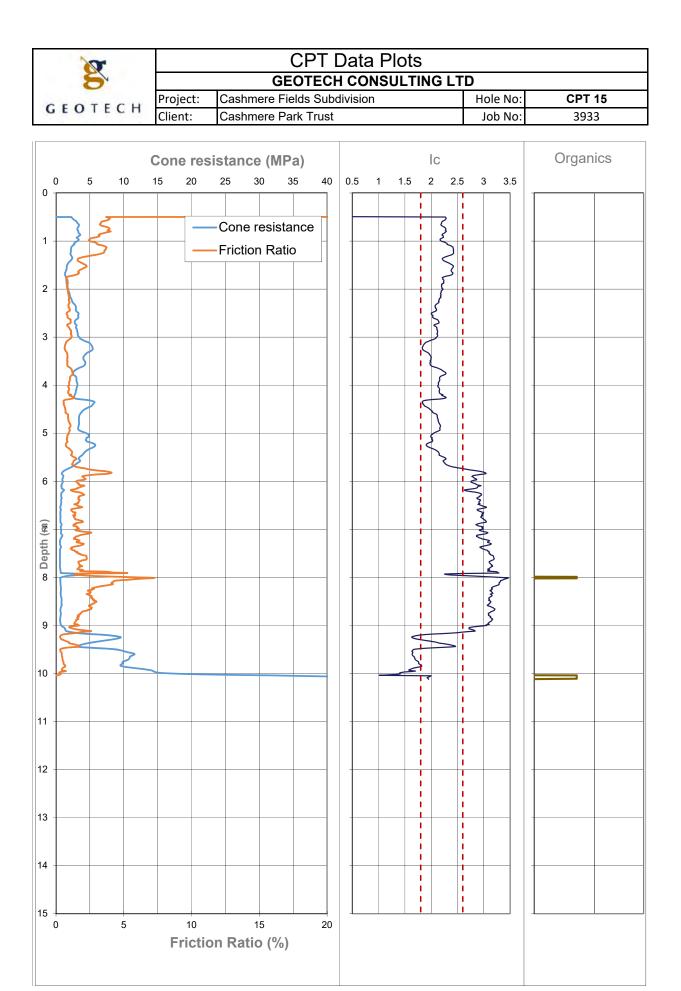




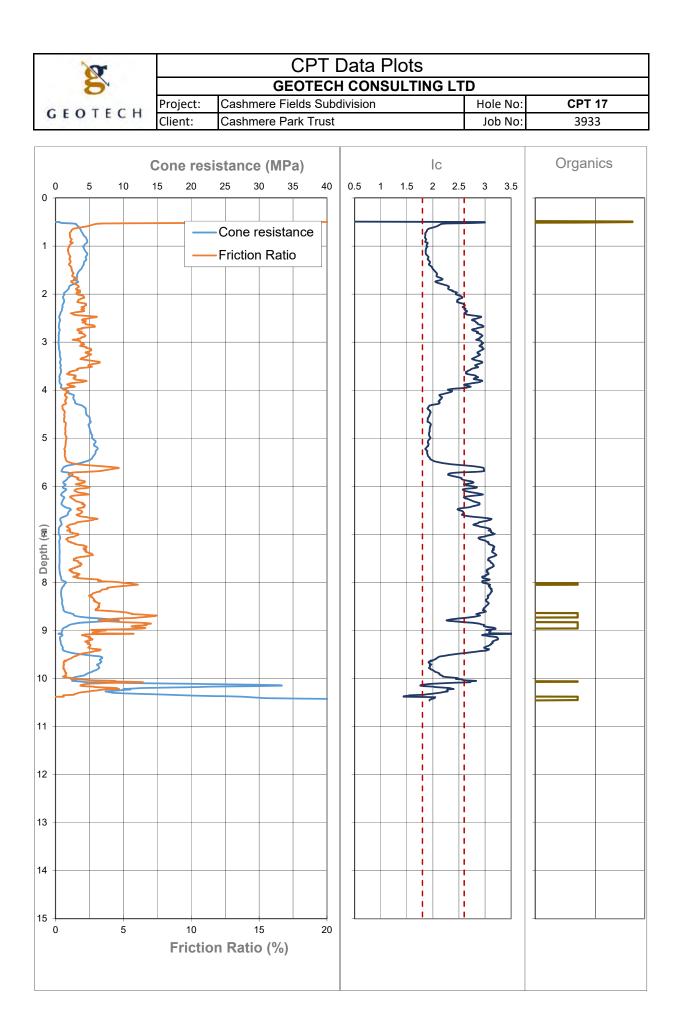

3	CPT Data Plots					
5	GEOTECH CONSULTING LTD					
GEOTECH	Project:	Cashmere Fields Rezoning	Hole No:	CPT 8		
	Client:	W Lewis	Job No:	3933		

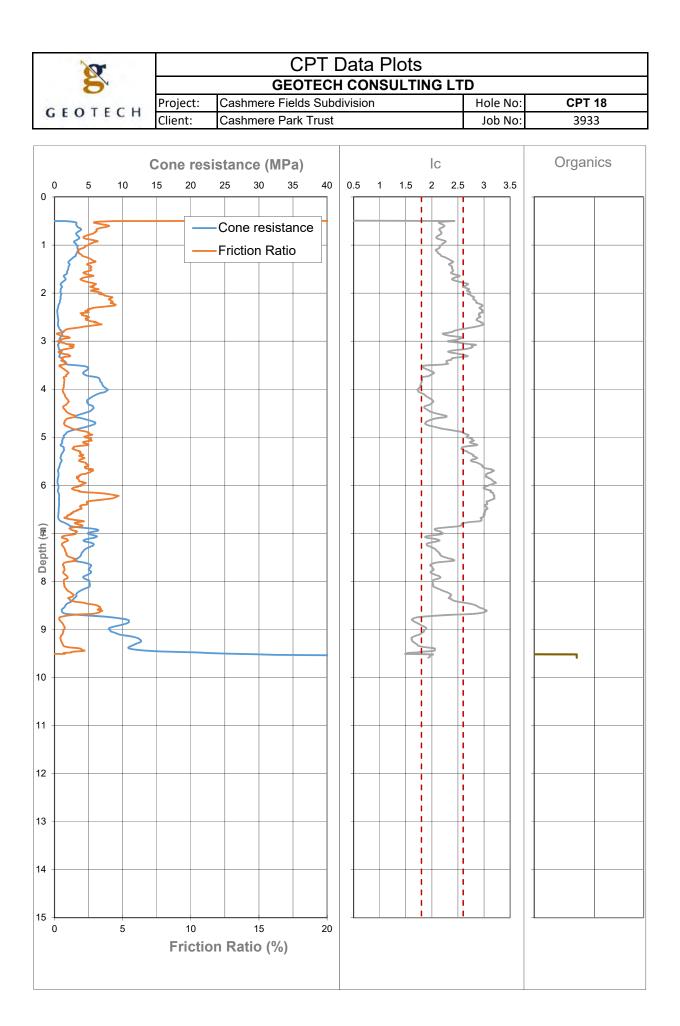


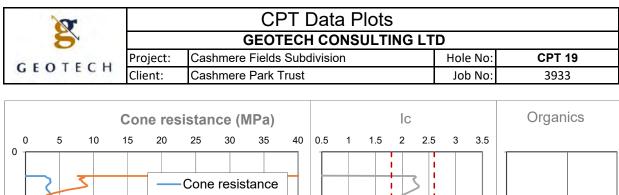


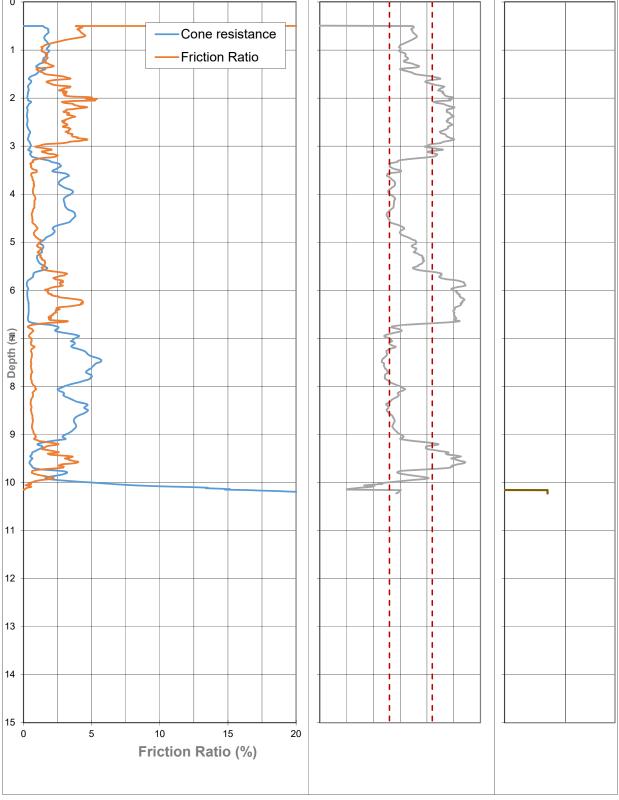


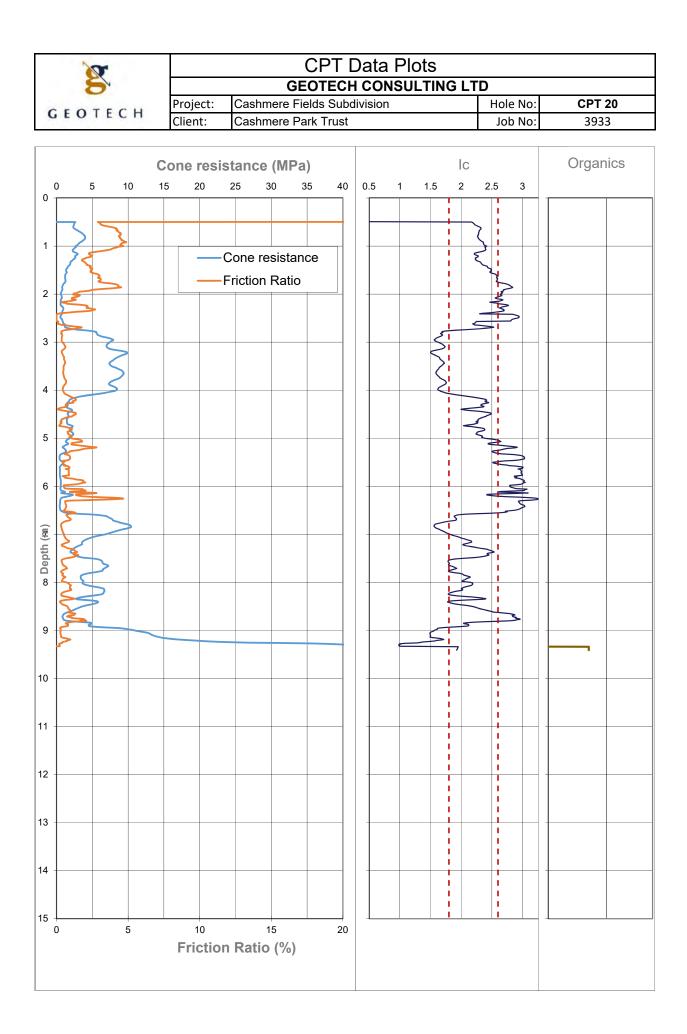


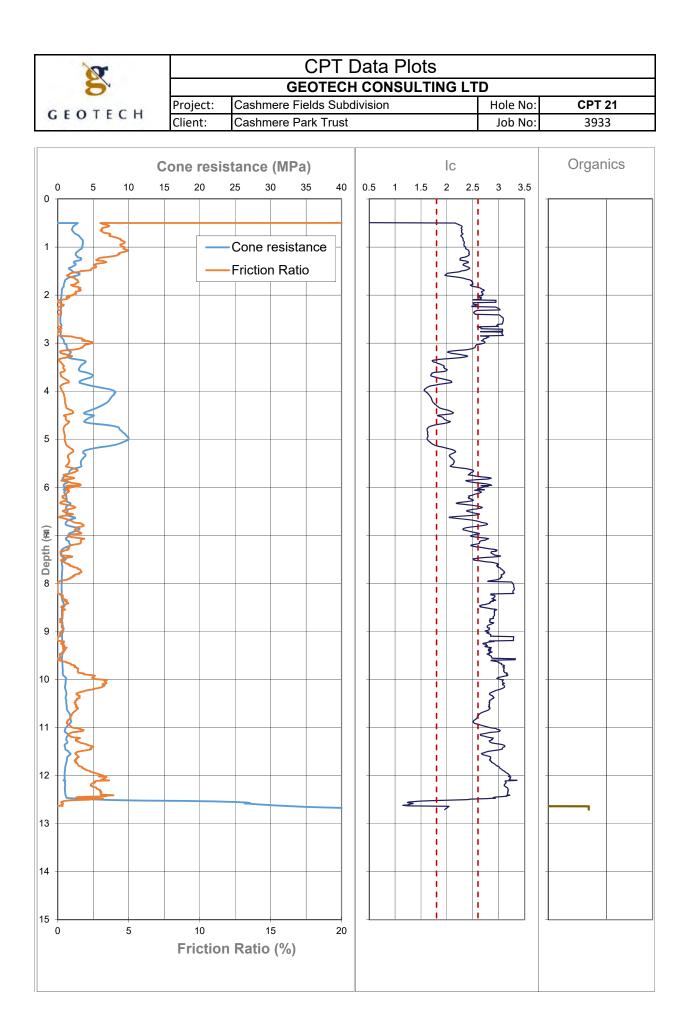


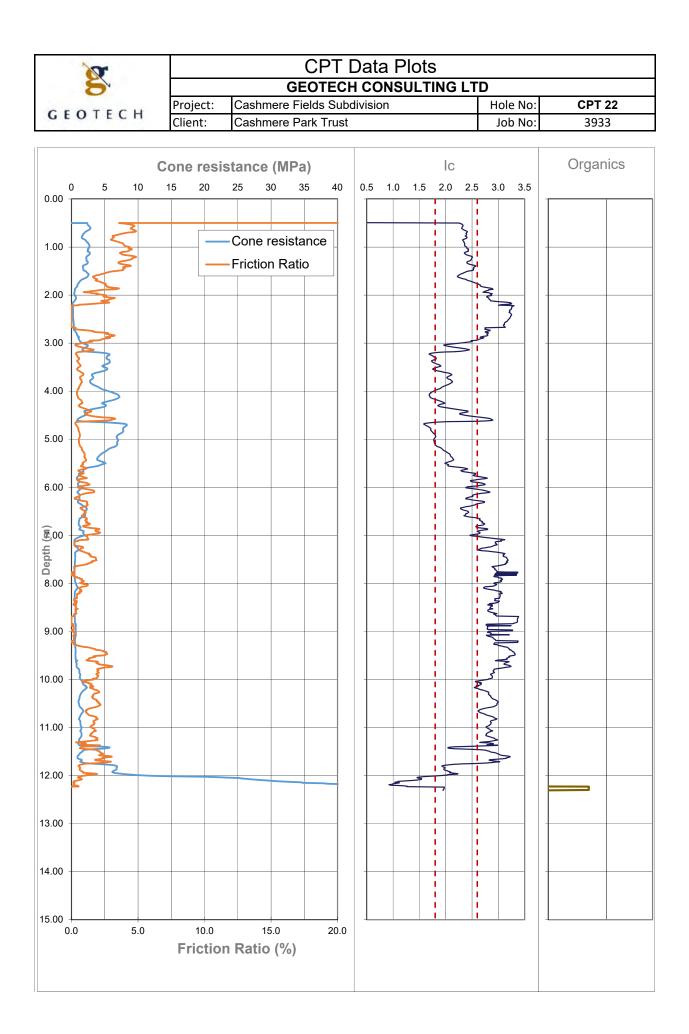


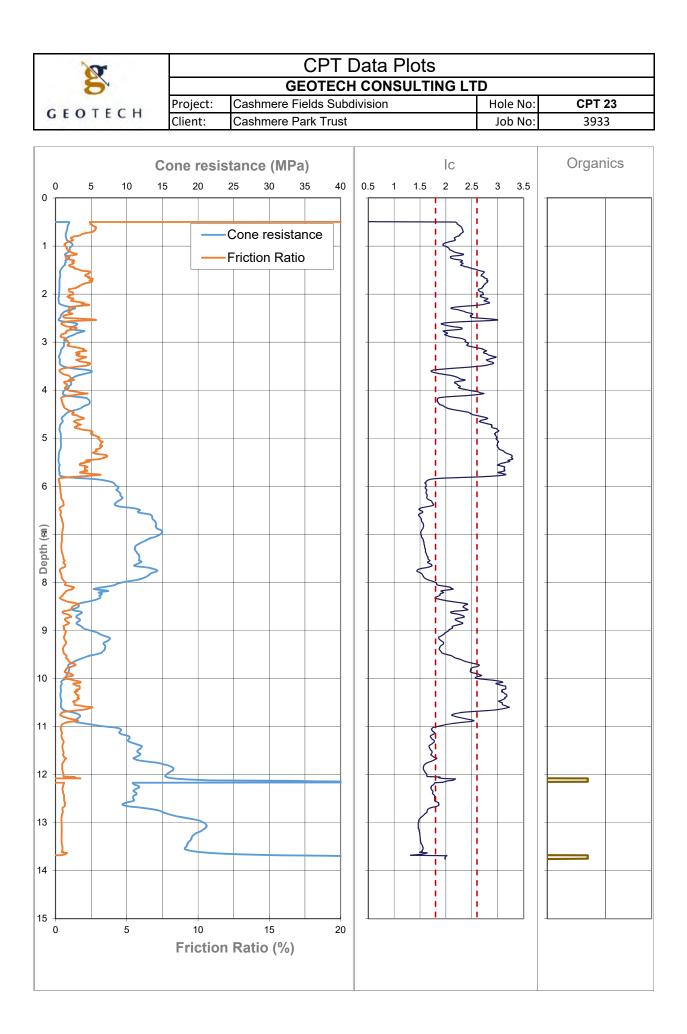


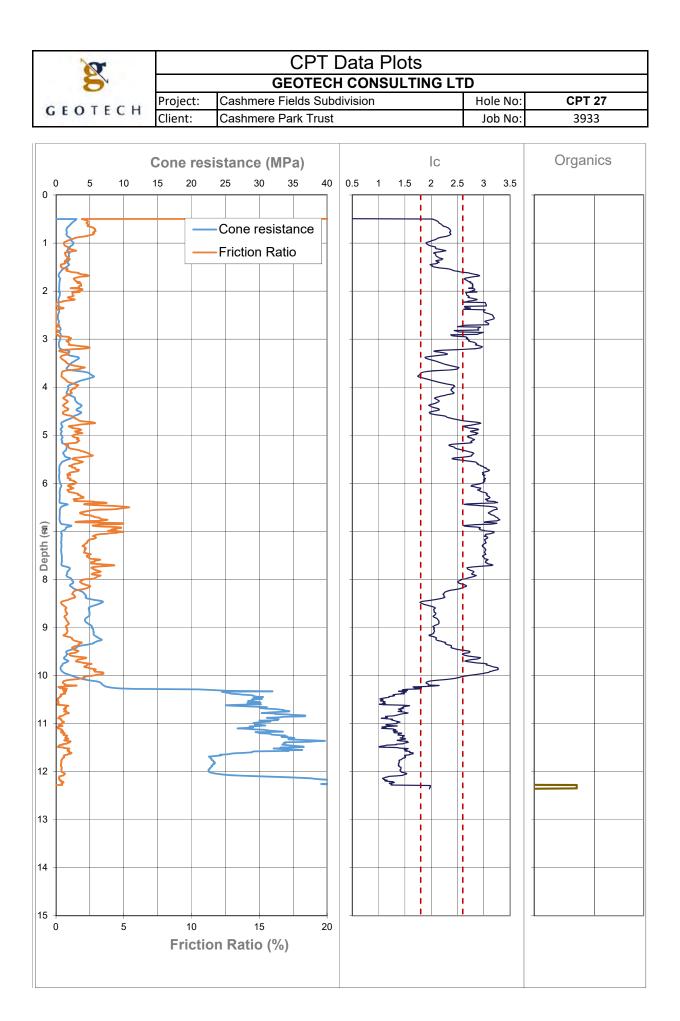


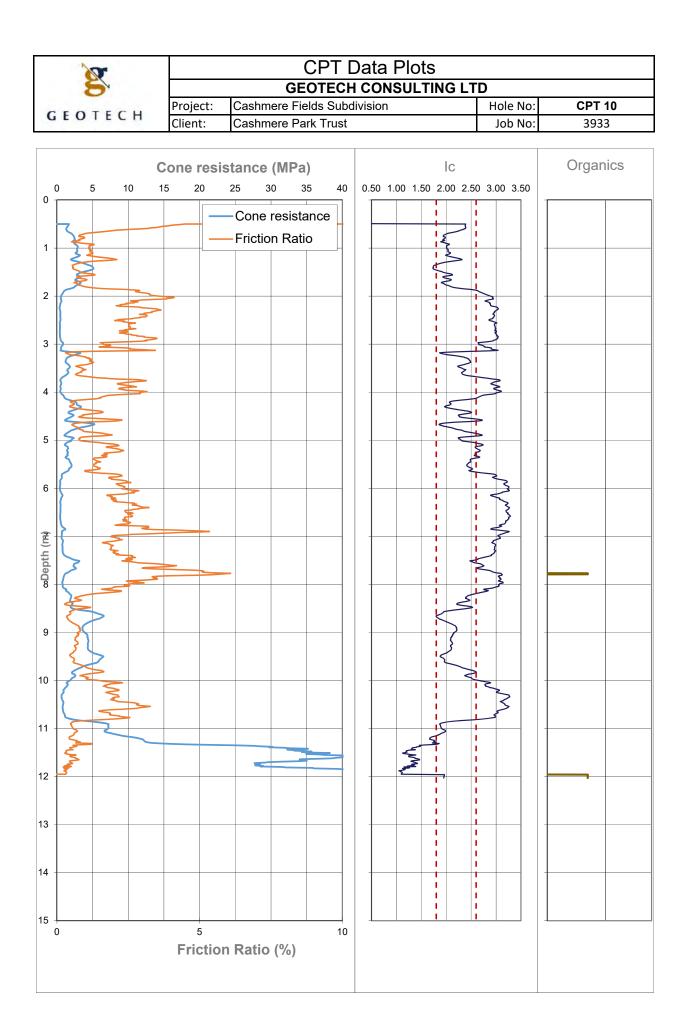


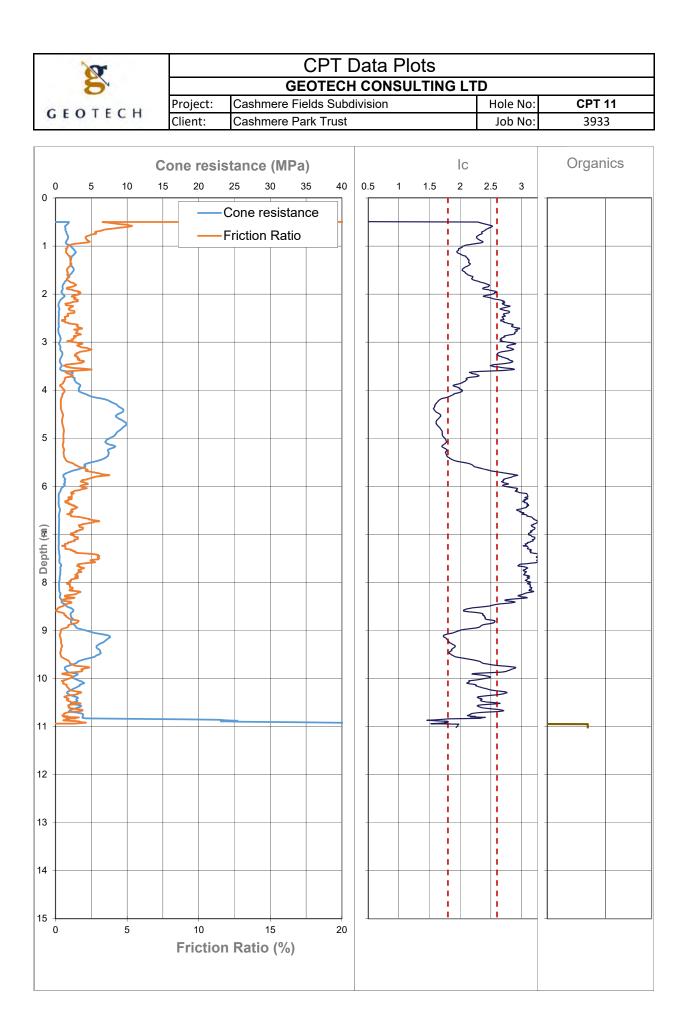


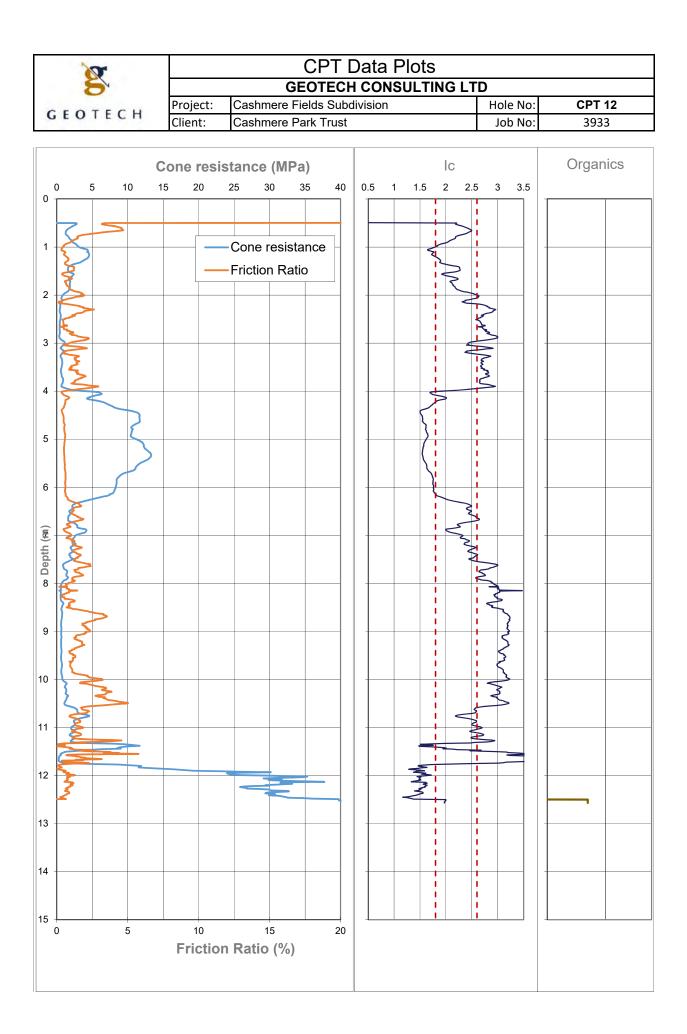


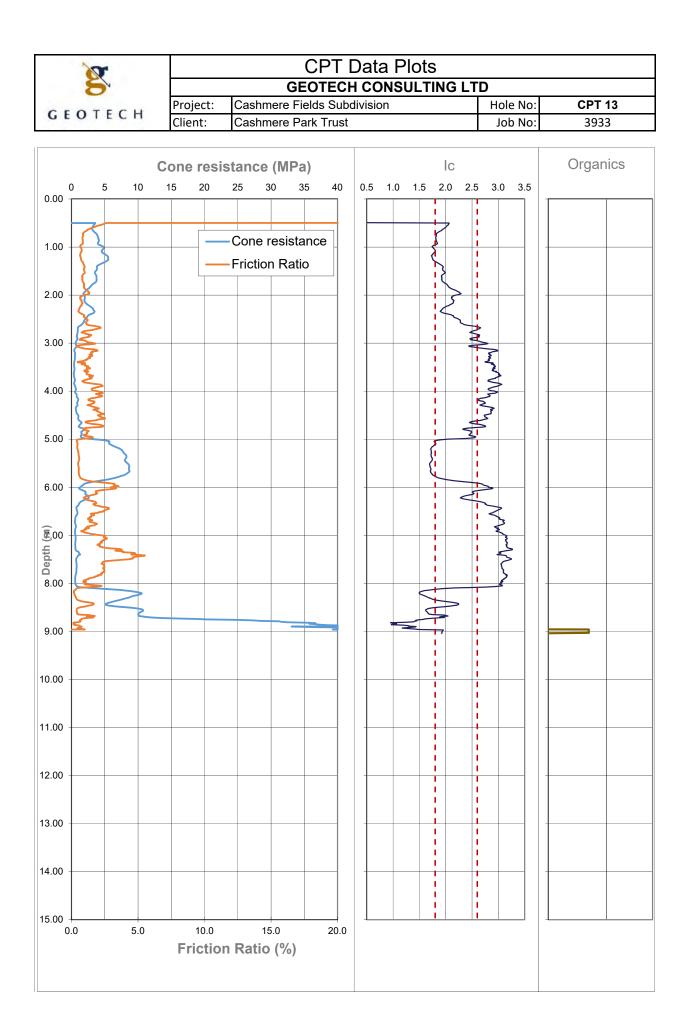


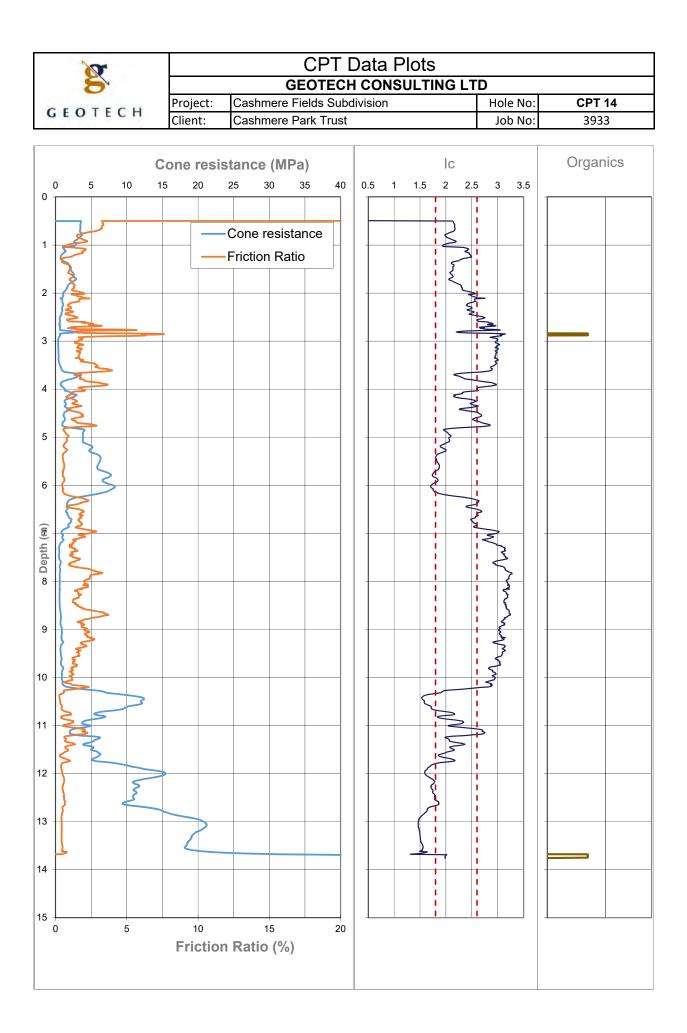


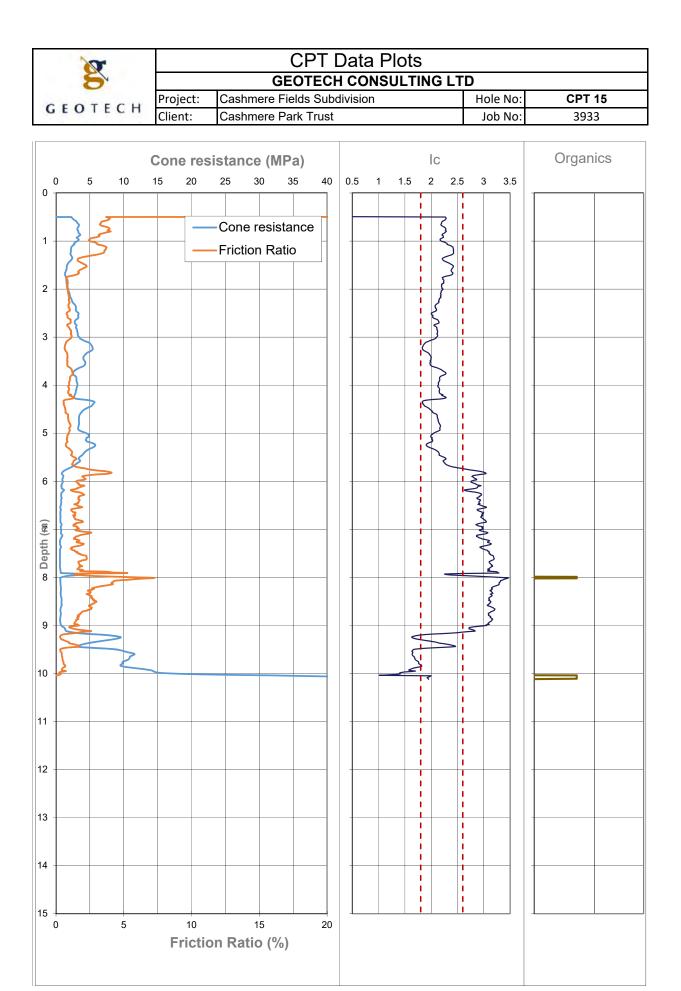




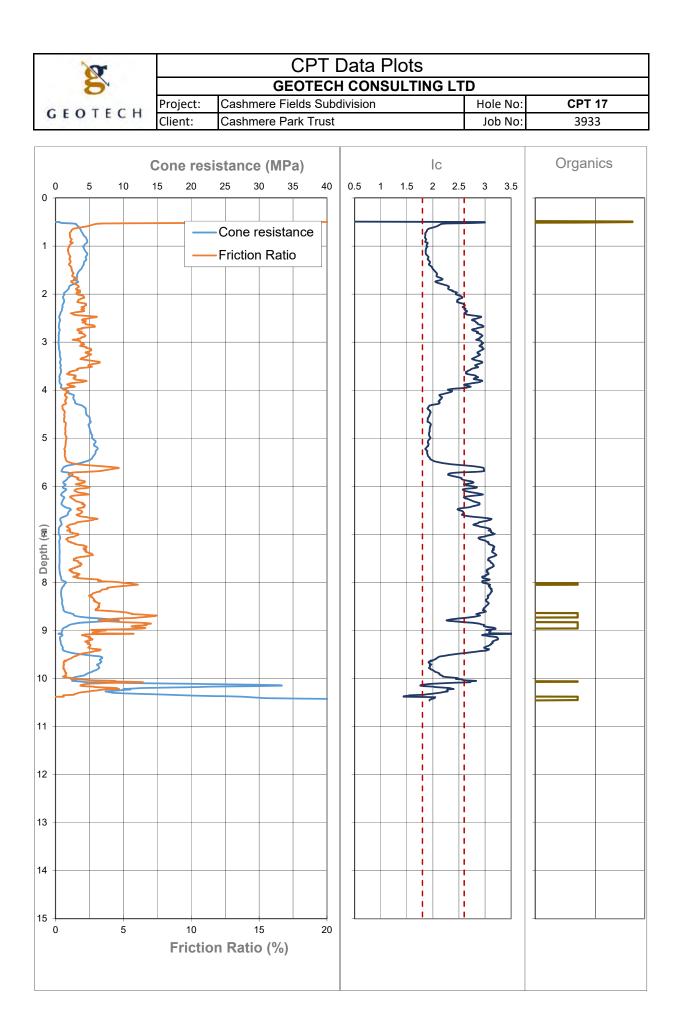


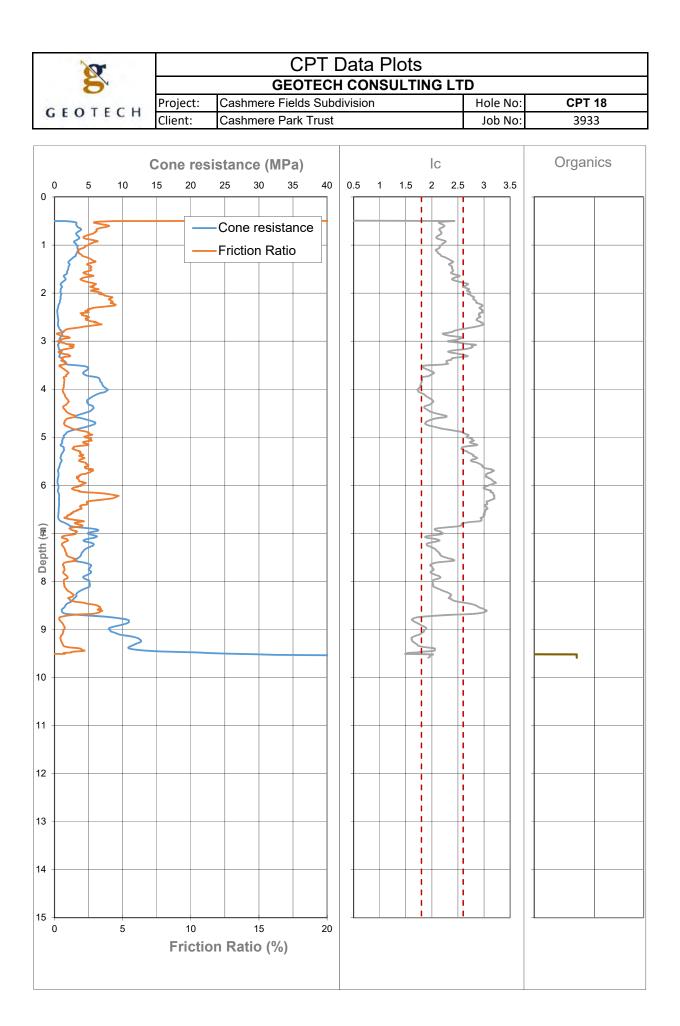


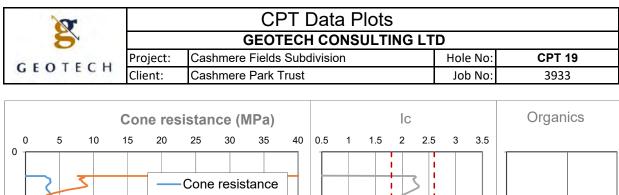


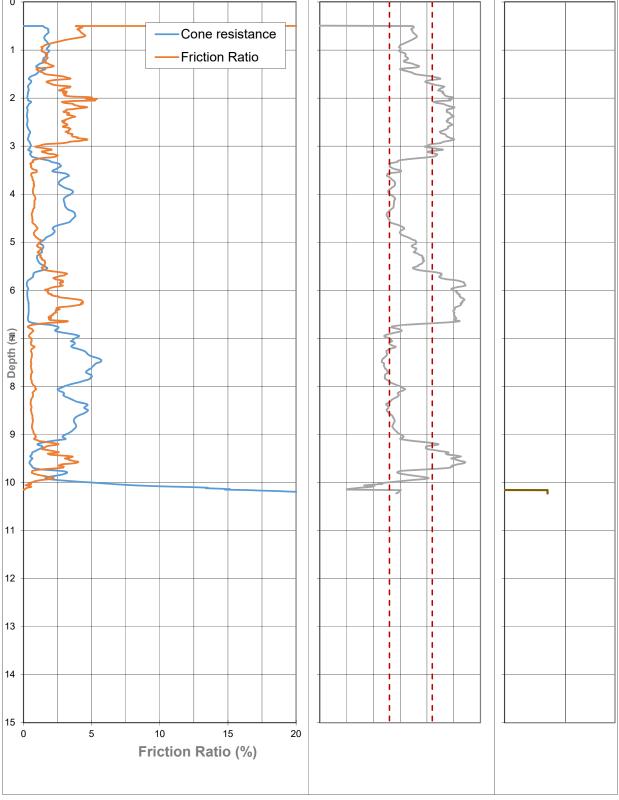


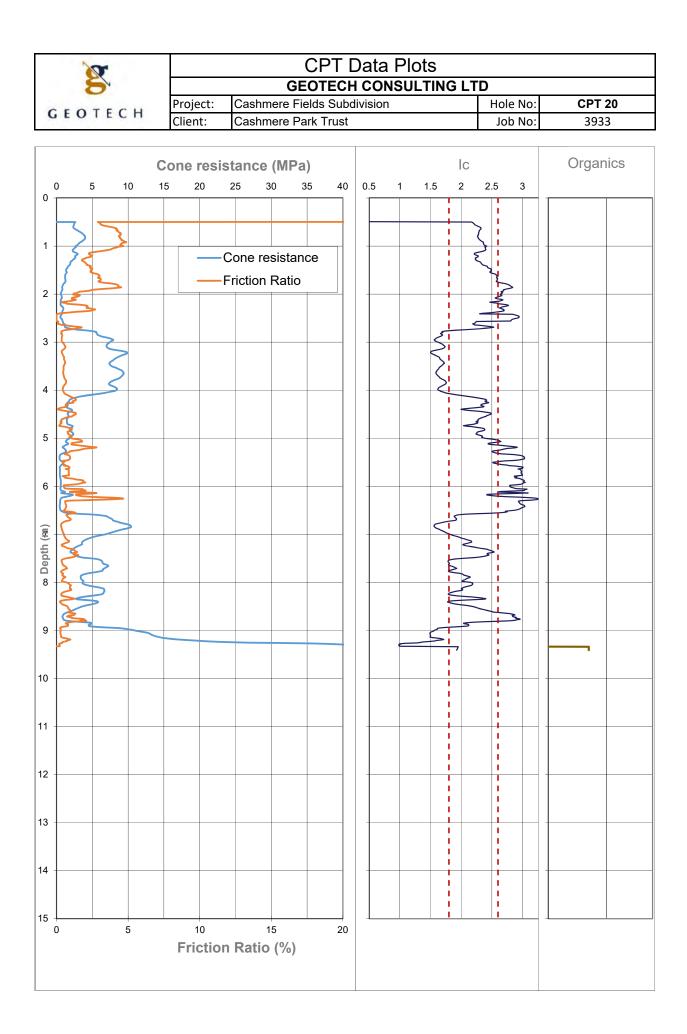


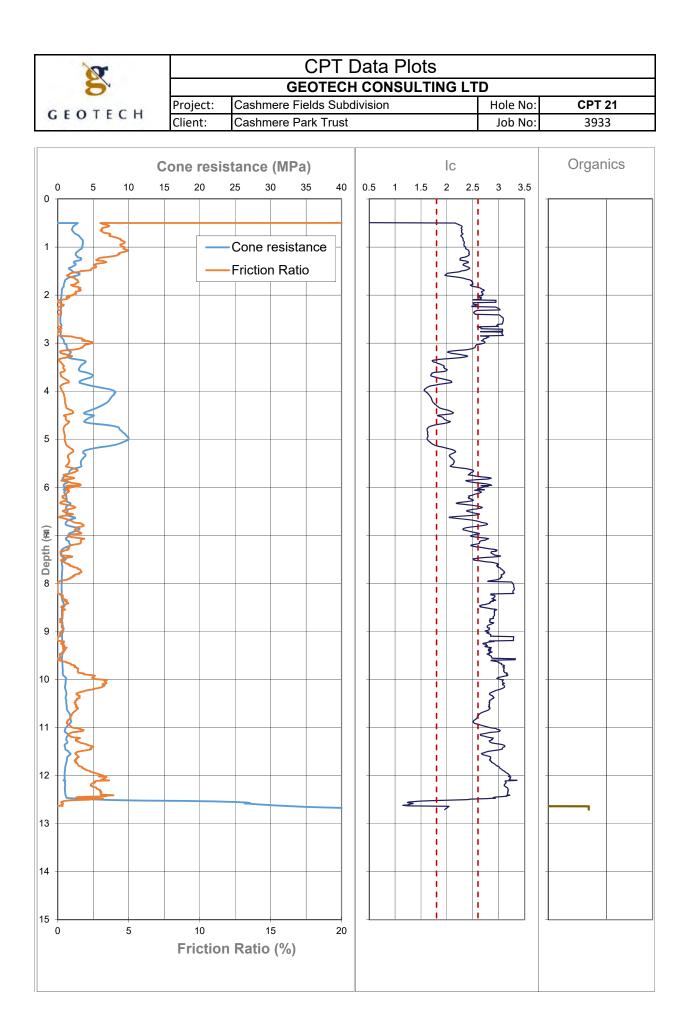


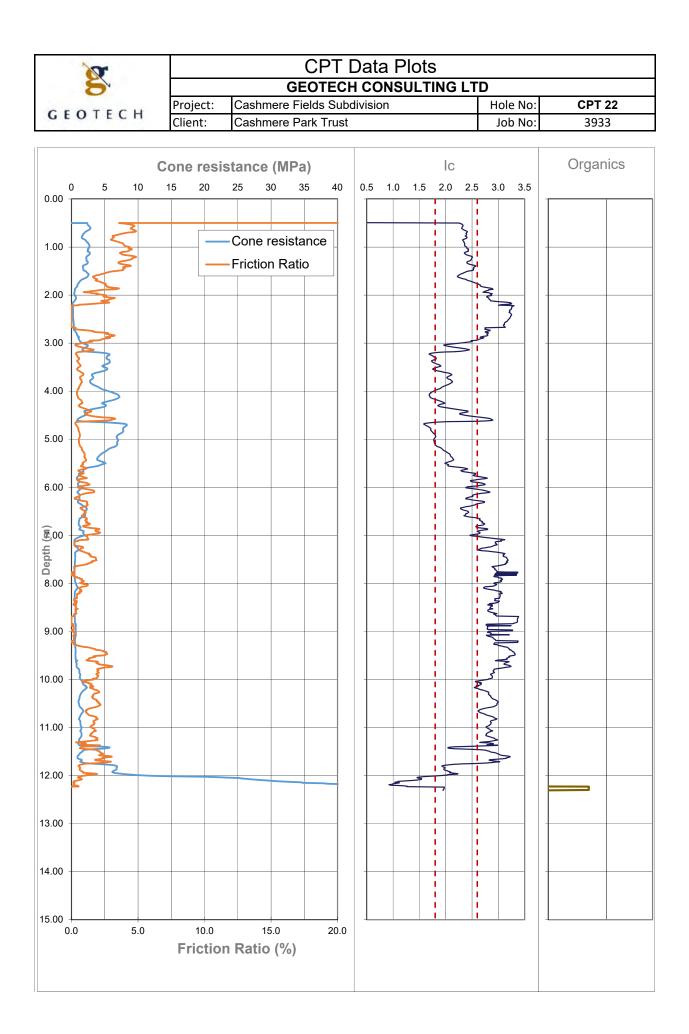


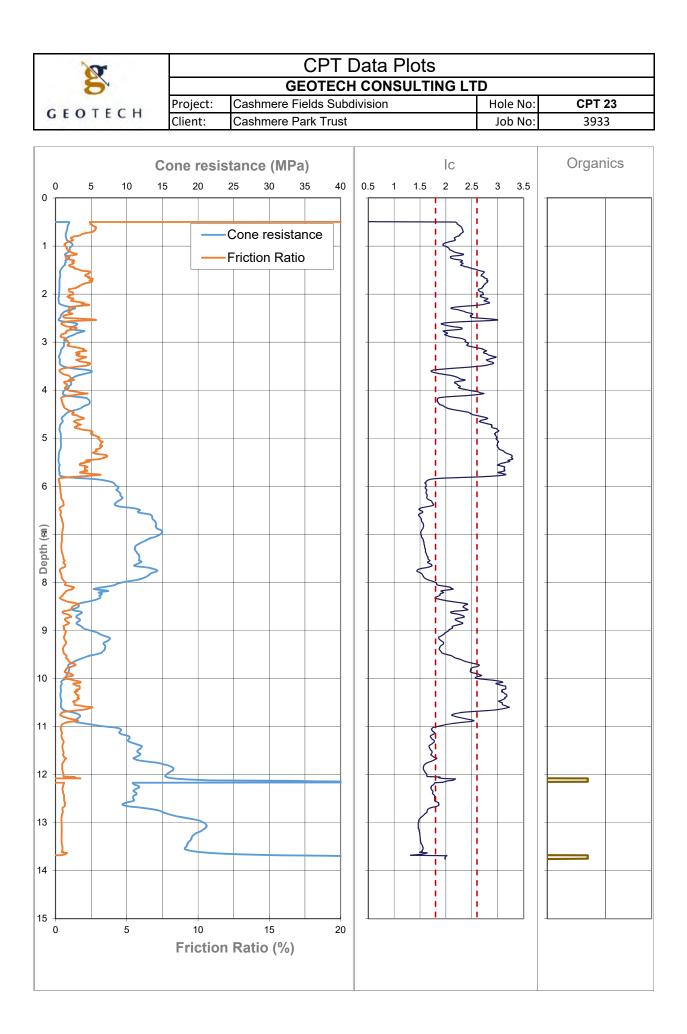


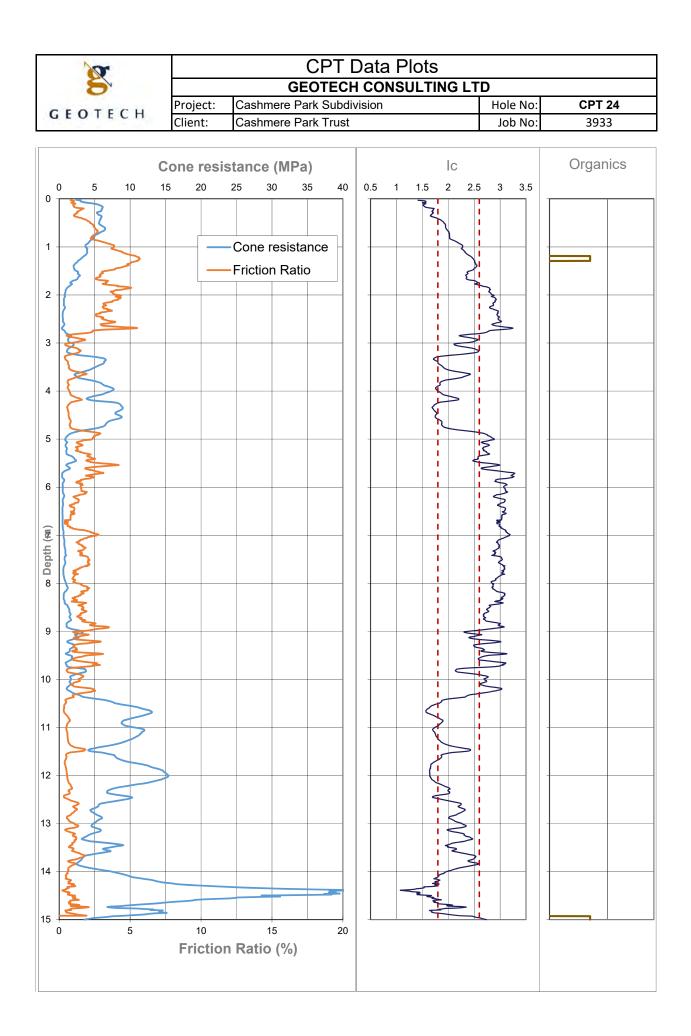


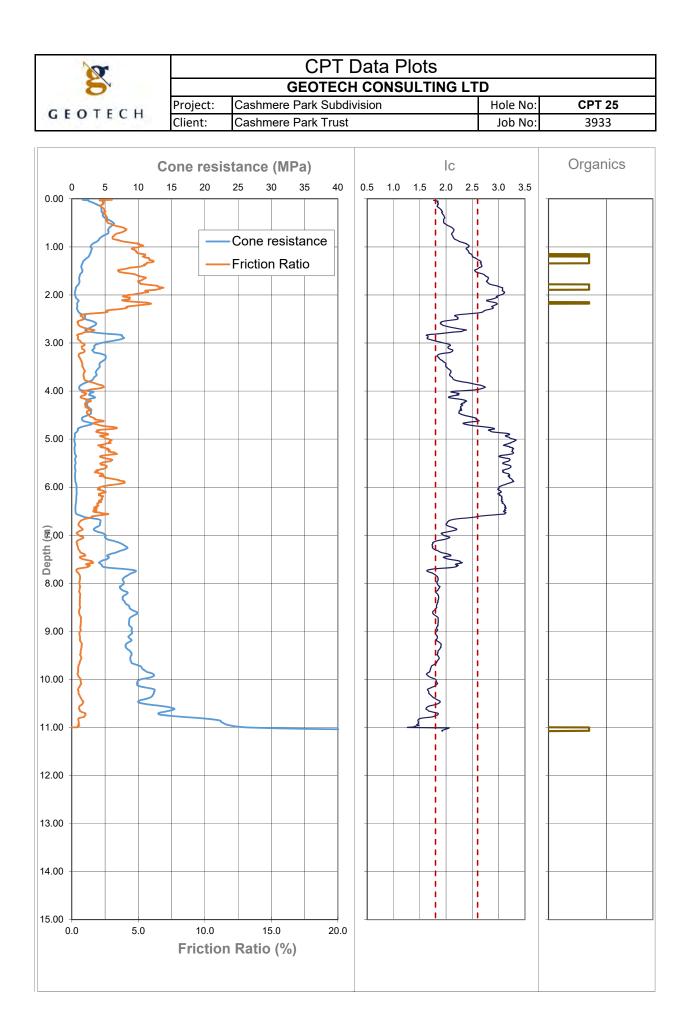


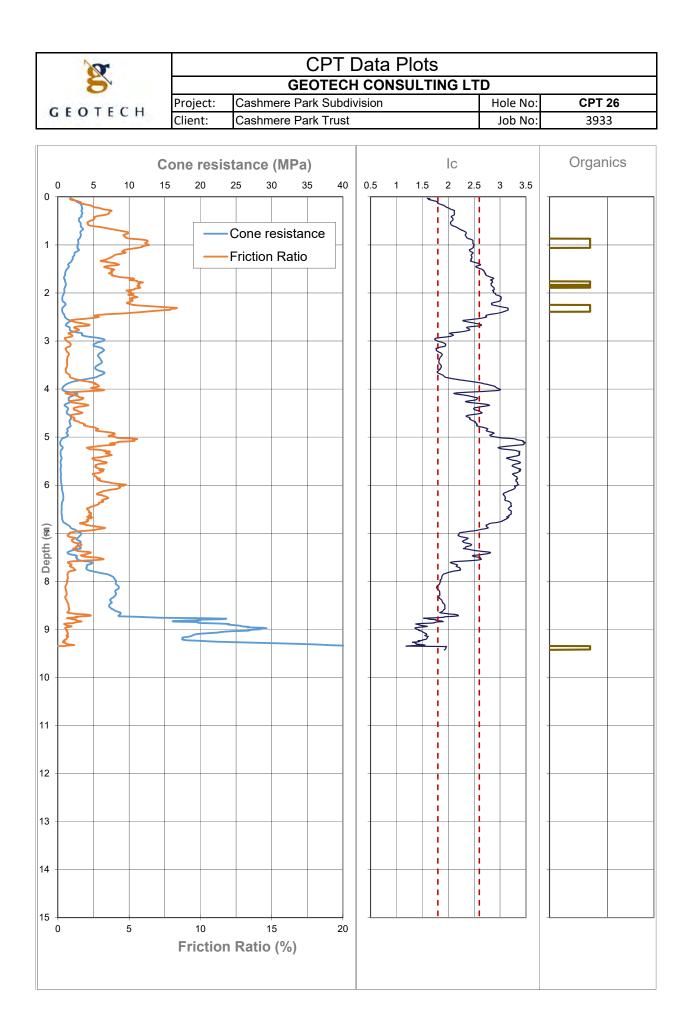


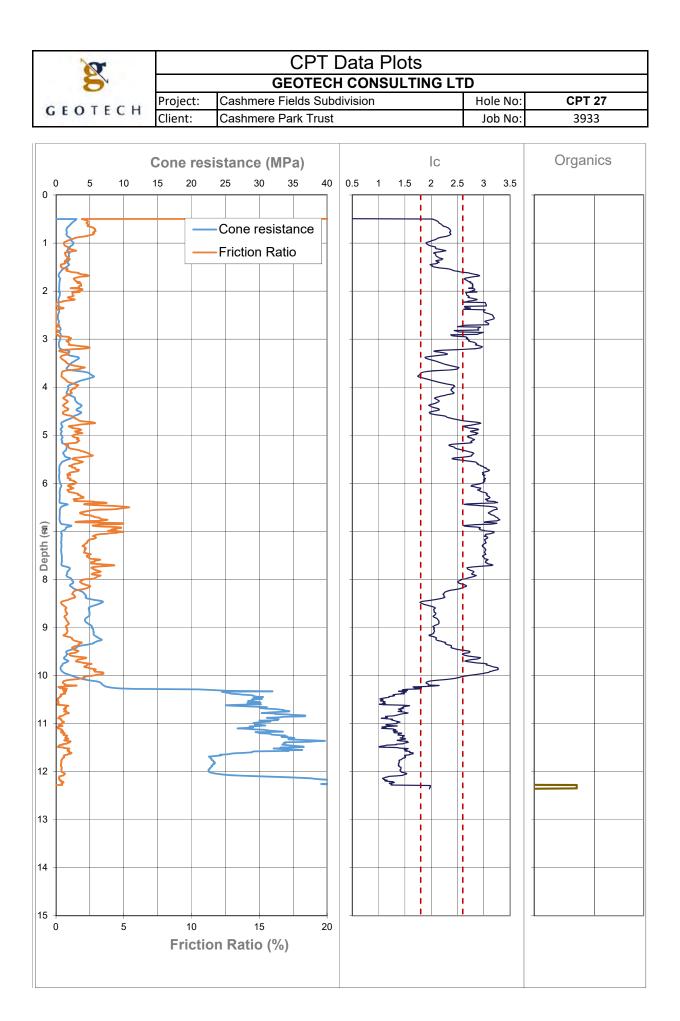


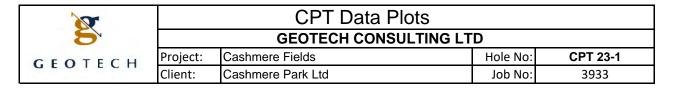


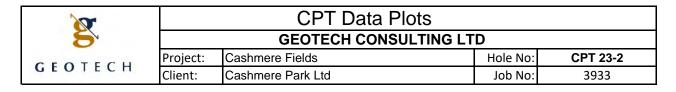


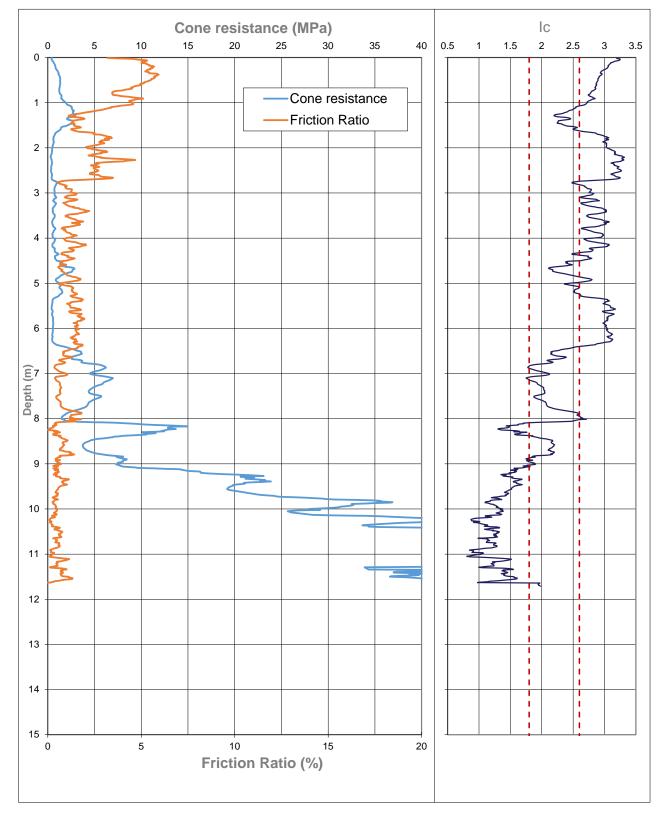


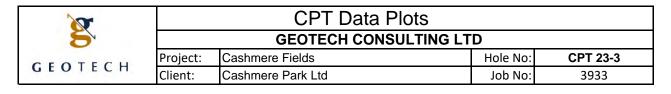


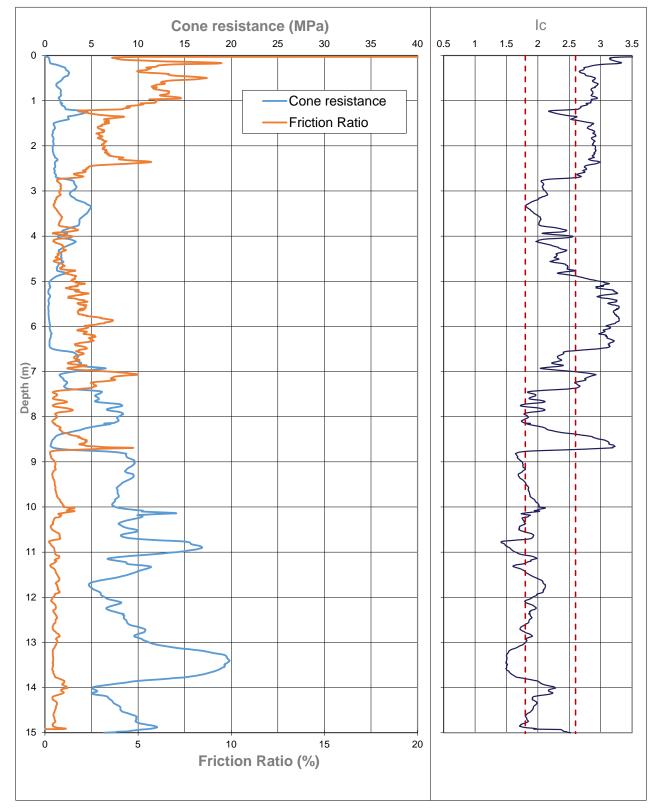


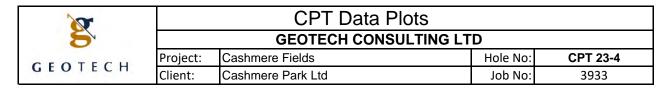


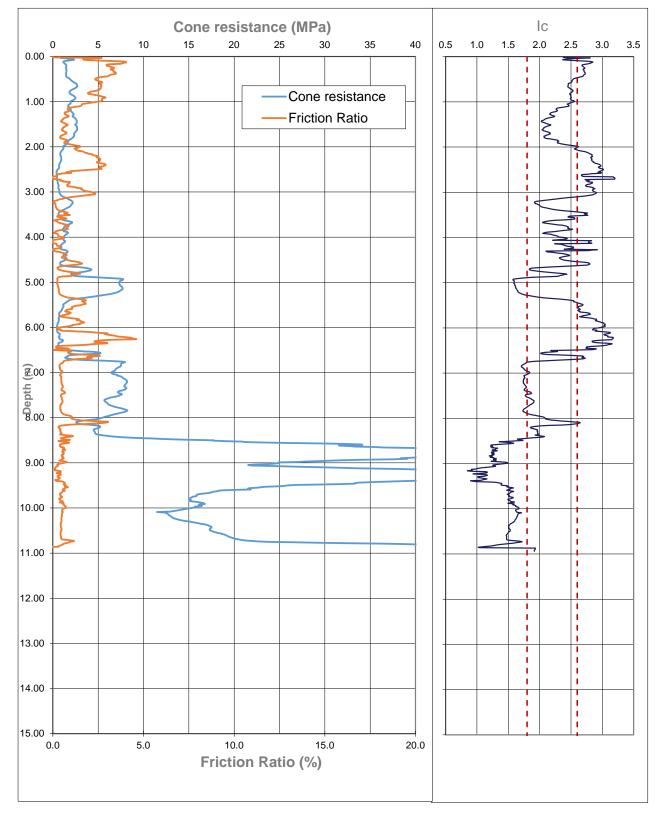


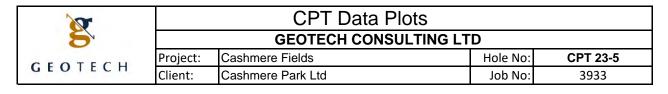


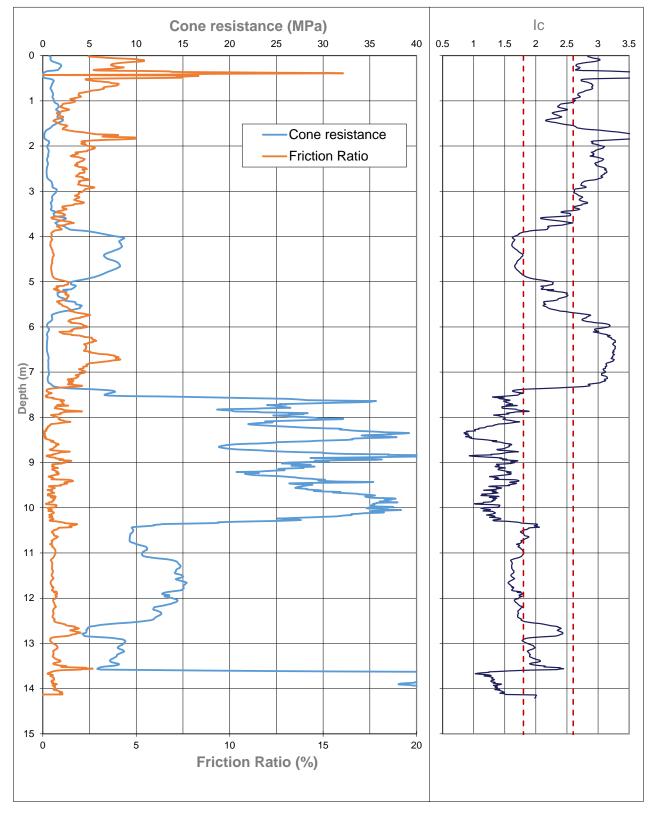


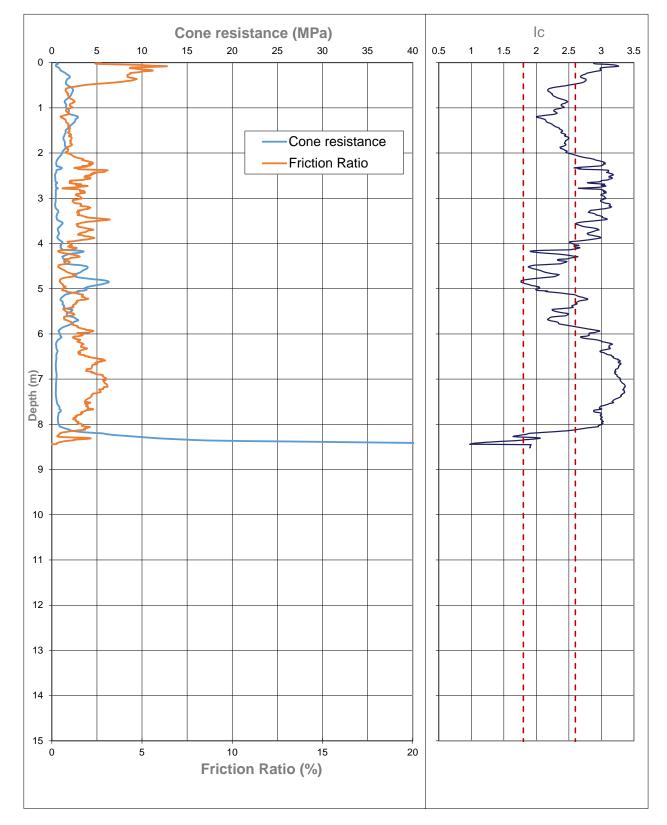


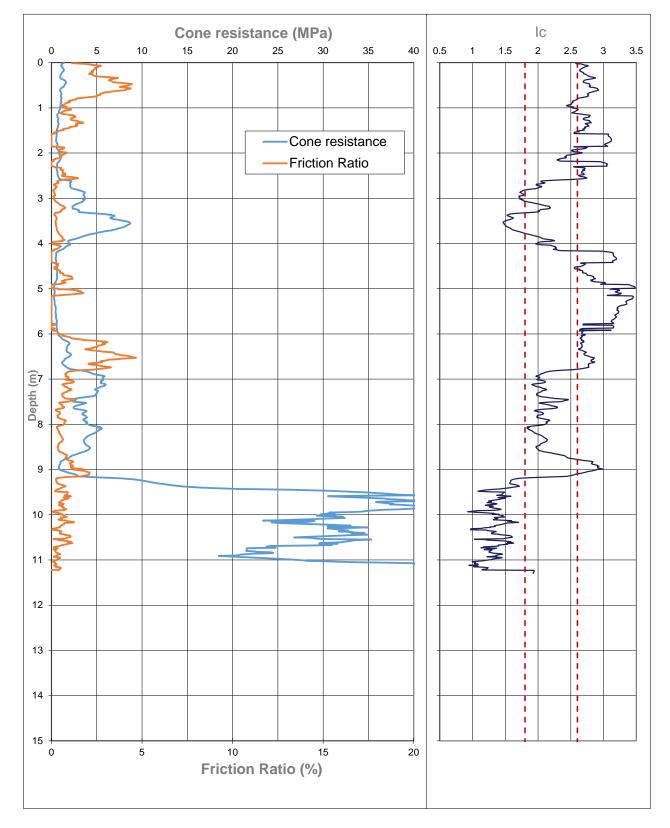


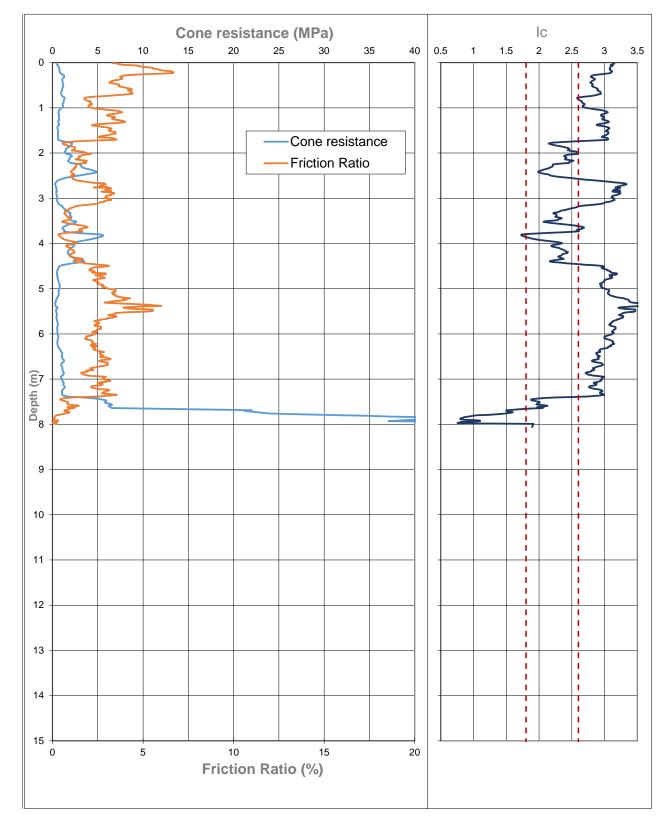


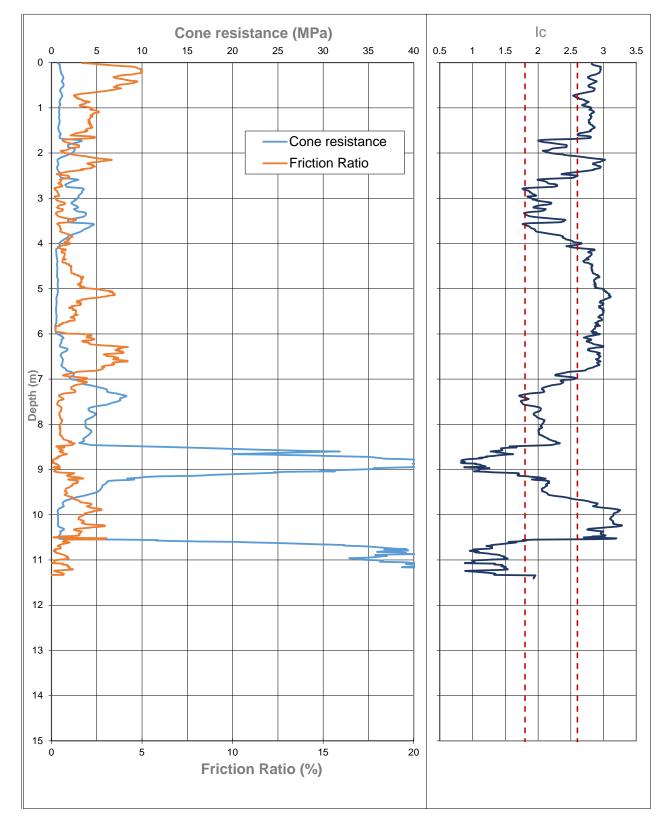


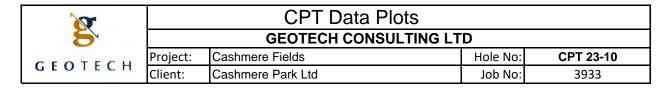


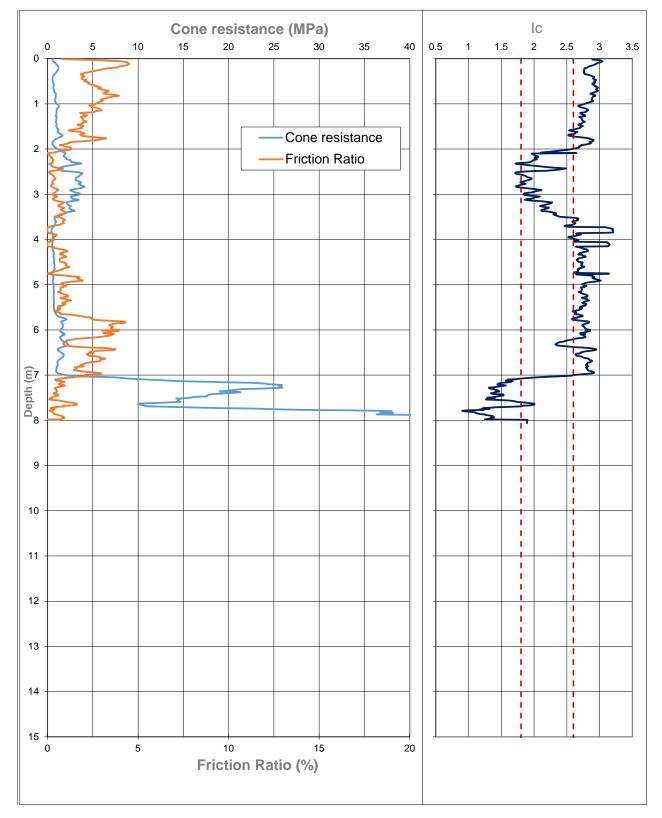





3		CPT Data Plots		
5		GEOTECH CONSULTING LT	D	
GEOTECH	Project:	Cashmere Fields	Hole No:	CPT 23-6
GEOTECH	Client:	Cashmere Park Ltd	Job No:	3933


3		CPT Data Plots		
5		GEOTECH CONSULTING LT	D	
GEOTECH	Project:	Cashmere Fields	Hole No:	CPT 23-7
GEOTECH	Client:	Cashmere Park Ltd	Job No:	3933




3		CPT Data Plots		
5		GEOTECH CONSULTING LT	D	
GEOTECH	Project:	Cashmere Fields	Hole No:	CPT 23-8
GEOTECH	Client:	Cashmere Park Ltd	Job No:	3933

3		CPT Data Plots		
5		GEOTECH CONSULTING LT	D	
GEOTECH	Project:	Cashmere Fields	Hole No:	CPT 23-9
GEOTECH	Client:	Cashmere Park Ltd	Job No:	3933

	Z		SHALLC				IOL	EL	OG	Hole No: Job No: Logged by:	3933 YUY
C	ЕОТЕСН		Cashmere Field Cashmere Park		isio	on				Date drilled: Checked by:	8/03/2018 NJT
U		Hole location:	Refer to Site Plan	<u>ו</u>						Date checked	8/03/2018
	Driller: YUY Notes:	Contractor:		Equ	ipn	nent: H	A+SC		R.L:	Max depth:	
		TA DESCRIP	TION		USCS	Graphic Log	Water Table	Samples	5.P.1 N uncorrected 0 50 100	SCALA PENETRO (mm/blow) 34 50 1	METER 00 1 \$ 0
0.0	Topsoil; dark brow	n.				x _ x			-	o	0
					OL	x~, ~ x _ x ~,					
0.5 •	SILT with trace of S to fine Sand, moist				ML	× x × x × x × x			-		
	Sandy SILT; brown.	Fine Sand, w	vet, low			× x × x × x					
	plasticity.				-	x x x x x x x x					
1.0					-	x x x x x x x x	8/03/2018				
	-1.1m, saturated.					x x x x x x x x					
					ML	x x x x x x x x					
1.5					-	x x x x x x x x					1
						x x x x x x					
						× × × × × × × ×					
2.0	-2.0m, E.O.H.]						2
2.5											2

	S.	SHALLOV	V B	0	REF	IOL	ΕL	OG		Hole No: Job No:	
	5									Logged by:	YUY
		Project: Cashmere Field Su		sic	on					Date drilled:	8/03/2018
G	EOTECH	Client: Cashmere Park Tru	ıst							Checked by:	
	Driller: YUY	Hole location: Refer to Site Plan Contractor:	Faui	nm	nent: H	A+SC		R.L:		Date checked: Max depth:	8/03/2018
	Notes:	oominuotor.	Equi			100		10.2.1		max doptin	
		A DESCRIPTION		USCS	Graphic Log	Water Table	Samples	S.P.I N uncorrected		CALA PENETRON (mm/blow)	
0.0				<u>></u>	<u></u> 7	<u> </u>	Ű	0 50 100		4 50 10	0 150
	Topsoil; dark brown	า.			~						
				-	~ X					Ĭ	
				oL	×~:						
				4	່ ×ັຼາ						
					~ ×						
'				H	X ~ 3						
				-	x x						
		and; brown. Very fine to		-	Î XÎ X						
	fine Sand, moist, lo	w plasticity.			xx						
0.5				-	xx						0.5
					xx						
				H	x x						
				₋∥	хх						
				M	хх					00	
					ХХ					Ĩ	
				H	хх						
					хх						
				H	хх						
					хх					iα	
1.0			_	_	x x x x			-			1.0
	Sandy SILT; brown.	Fine Sand, wet, low			^ X X X						
	plasticity.			-	xx						
					× × × ×						
					x x				-		
					хх						
					хx					P	
					xx						
					xx						
1.5				ML	хх			-			1.5
				-	хх						
					хх	Δ					
					хх	8/03/2018					
				-	хх						
	-1.7m, saturated.				ХХ						
					ХХ						
					ХХ						
					хх						
					ХХ						
2.0					×х				┝╍┝╍┝╸	5	2.0
	-2.0m, E.O.H.										
2.5											2.5

		SHALLO	ΝB	0	REF	IOL	EL	OG		Hole N	lo:	HA0	3
	X		_	-				-		Job	No:	3933 VUV	
	0	Project: Cashmere Field S	ubdivi	sio	n					Logged Date dril	by:	YUY 8/03/20	018
G	EOTECH	Client: Cashmere Park T								Checked	by:	NJT	
-		Hole location: Refer to Site Plan						1 1		Date chec		8/03/20)18
	Driller: YUY Notes:	Contractor:	Equi	pm	ent: H	A+SC		R.L:		Max de	pth:		
				6	hic	5 0	es	S.P.I N uncorrected	S	CALA PENET		ETER	
0.0	STRAT	A DESCRIPTION		nscs	Graphic Log	Water Table	Samples	p 50 100 p		(mm/blo 34 50	5W) 100)	150
0.0				ľ	x >								0.0
	Topsoil; dark brown	1.			_ x					! o			
					~~								
					x x					!			-
					_ x́					İ.			
				H	$\tilde{\mathbf{x}}_{2}$					j P			
				I	x x					İ 🛛			
					<u>^~'</u>					<u>!</u>			
		brown. Fine Sand, moist,			^					İ 🛛			
0.5	- low plasticity.			H	xx		· _ · _ · _ · _ · _ · _			i oo			0.5
					хх					i 📗			
				-	хх					1			
					хх					i I			
					хх					i			
					X X					iœ			
					× x × x								
					x x								
					x x								
1.0					хx					100			1.0
					хх								
					хх			-					
					хх								
				N	X X			-					
					× × × ×								
				-	xx								
					хх								
					хх		-						
1.5 •					хх								1.5
1.5					хх]						1.5
				-	X X								
					x x x x								
				-	xx			-					
				H	хх	8/03/2018				ø			
						8/0;							
				H	хх								
	-1.95m, saturated.				× x								
2.0 •							1			¢ ;			2.0
	-2.0m, E.O.H.						-						
				_									
2.5							1						2.5

]	SHALLOW	B	0	REF	IOL	ΕL	OG			Но	le No:	HA0	4	
													lob No: ged by:	3933		
	0	Project:	Cashmere Field Sub	divis	sio	n						Date	drilled:	8/03/2	018	
G	EOTECH		Cashmere Park Trus	st								Ch	ecked by:	NJT		
	Driller: YUY		Refer to Site Plan			ent: H	A . CC		R.				checked:	8/03/2	018	
	Notes:	Contractor:		quip		ent: n	4+30		K.	L:		141	ax depth:			
				U	0	hic	e	oles	S.P N uncor		S		ENETROM nm/blow)	IETER		
0.0	JIKAI	A DESCRIP	TION			Graphic Log	Water Table	Samples	0 50	100 0		34 50	10 III	0	1	\$ 0 0.0
0.0	Topsoil; dark browr	า			T	x x										0.0
		1.			ŀ	~ ~						!	•			
						x ~ :										
				_	ll.	x >				_		1				
				5		~ ~						:				
'					H	x _ :				_		 :	•			
					ŀ	x >						:				
1					H	~ ~						:				
0.5 •	Sandy SILT: grouich	brown Eine	Sand moist		1	× x										
0.5	- Sandy SILT; greyish low plasticity.	JI OWH. FIHE	Sanu, moist,		ľ	хх										0.5
						хх						!				1
						X X						!				1
					H.	× × × ×			-	_		!				
						x x						!0-0				
				_	H	xx						1				
						хx						!				
					Н	хх				_		<u> </u>				
						хх										
1.0 •					H.	ХХ			-							1.0
					1	x x x x										
					ľ.	xx						!				
						x x						!				
				Z		хх						1				
						хх				_		İ				
						хх						!				
					H.	× × × ×				_		<u> </u>				
					ľ	× × × ×						oo				
1.5 •					H	хх						<u> </u>				1.5
						x x						!				
					j:	хх						İ				
						х х ~ ~ ~						!				1
						x x						!				
						× × × ×										
						x x	~									1
						хх	Δ 1					<u>+</u>				1
	-1.95m, saturated.					× × × × × × × ×	8/0;					!				
2.0				┥	┛┝	v						0				2.0
	-2.0m, E.O.H.															
1																
												!				
					1							1				
					_					_		I				1
																1
					_							i :				1
																1
2.5	L															2.5

Since John Max John Max <thjohn max<="" th=""> <thjohn max<="" th=""> <thj< th=""><th></th><th></th><th></th><th>SHALLO\</th><th>NB</th><th>BC</th><th>REF</th><th>IOL</th><th>EL</th><th>OG</th><th></th><th></th><th>Но</th><th>ole No:</th><th>HA0</th><th>5</th></thj<></thjohn></thjohn>				SHALLO\	NB	BC	REF	IOL	EL	OG			Но	ole No:	HA0	5
CEOTECH Protect Cashware Field Subdivision Data chick Str. NUT Data chick Str. NUT Driller: VUY Convector Equipment: HA-SC R.L Max depth 00 STRATA DESCRIPTION Str. Ar D														Job No:	3933	
Clear Clashnor Park Trust Contractor: <		0	Project:	Cashmere Field S	ubdiv	isio	on						Date	ggea by: drilled:	8/03/20)18
Note action: Edge to Sta Plan Equipment: HA-SC R.L: Max depti: 000 STRATA DESCRIPTION Image: Strate depti: Sold > Strate depti:	G	FOTECH											Ch	ecked by:	NJT	
Notes: STRATA DESCRIPTION 0	0		Hole location:	Refer to Site Plan											8/03/20	018
STRATA DESCRIPTION 8			Contractor:		Equi	ipn	nent: H	A+SC			R.L:		M	ax depth:		
STRATA DESCRIPTION Reserved bit Number of bit Numer of bit Number of bit Numbe		Notes:					.O		ŝ			5	SCALA P	ENETRON	IETER	1
Topsoil; dark brown. X		STR	ATA DESCRIP	TION		SCS	iraph og	/ater able	ample			h			n	150
10pson, dark brown: 7	0.0				-	<u> </u>		_>⊢	رم ا							0.0
3		Topsoil; dark bro	own.				~						i			
as Image: Same set of the set o	1												: 	Ť		
Sandy SILT; greyish brown. Fine Sand, moist, -low-plasticity. X													:			
Sandy SILT; greyish brown. Fine Sand, moist, low plasticity. X	1					б	× يَ						i			
3 X - x X -							~ ×									
Sandy SILT; greyish brown. Fine Sand, moist, -low-plasticity. X × x x x x	1					-	×~:							-0		
Sandy SILT; greysh brown. Fine Sand, moist, x x x x <							x x						:			
Sandoy SiL1; greyish brown. Fine Sand, moist, low plasticity. x x x x x 1	1			<u> </u>			x x						:			
1.0 X × X X × X X × X 1.0 X × X X × X X × X 1.0 X × X X × X X × X 1.0 X × X X × X X × X 1.1 X × X X × X X × X 1.1 X × X X × X X × X 1.1 X × X X × X X × X 1.1 X × X X × X X × X 1.1 X × X X × X X × X 1.1 X × X X × X X × X 1.2 X × X X × X X × X 1.3 X × X X × X X × X 1.3 X × X X × X X × X 1.3 X × X X × X X × X 1.4 X × X X × X X × X 1.5 X × X X × X X × X 1.4 X × X X × X X × X 1.5 X × X X × X X × X 1.6 X × X X × X X × X 1.6 X × X X × X X × X													1			
1.0 X X X X X X X X X X X X X X X X X X X	0.5 •	- low-plasticity				-	хх						! 🏎			0.5
1.0 x x x x x x x x x x x x x x x x x x x							хх						İ			
1.0 x x x x x x x x x x x x x x x x x x x	1					F	хх						i l			
1.0 x x x x x x x x x x x x x x x x x x x													i 📕			
1.0 x x x x x x x x x x x x x x x x x x x	1						хх						i			
1.0 x													io-0			
1.0 x x x x x x x x x x x x x x x x x x x	1												i			
1.0													:			
1.0						F										
x x													100 :			
Image: second	1.0 •					Ē							- 1			1.0
1.5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td></td<>													1			
Image: series of series o	1					Σ							İ			
-1.35m, saturated. , x, x ,							xx	18					İ			
-1.35m, saturated. , x, x ,	1						xx	03/20					i			
-1.35m, saturated. x							хх	/6					: I			
-1.35m, saturated. X							хх						i.			
1.5		1 2Em caturata	d				хх						μ			
1.5 x x x x x x x x x x x x x x x x x x x		-1.55m, saturate	:u.				хх									
2.0 -2.0m, E.O.H. I	15						хх									1.5
2.0 x x x x x x x x x x x x x x x x x x x	1.5						-									1.5
20 x x x x x x x x x x x x x x x x x x x																
2.0 SILT with trace of Sand; brownish grey. Very fine to fine Sand, low plasticity.																
2.0 SILT with trace of Sand; brownish grey. Very fine to fine Sand, low plasticity. Image: Complex of Sand; brownish grey. Very fine to fine Sand, low plasticity. Image: Complex of Sand; brownish grey. Very fine to fine Sand, low plasticity. Image: Complex of Sand; brownish grey. Very fine to fine Sand, low plasticity. Image: Complex of Sand; brownish grey. Very fine to fine Sand, low plasticity. Image: Complex of Sand; brownish grey. Very fine to fine Sand, low plasticity. Image: Complex of Sand; brownish grey. Very fine to fine Sand, low plasticity. Image: Complex of Sand; brownish grey. Very fine to fine Sand, low plasticity. Image: Complex of Sand; brownish grey. Very fine to fine Sand, low plasticity. Image: Complex of Sand; brownish grey. Very fine to fine Sand; brownish grey. Very fine to fine Sand; brownish grey. Very fine to fine Sand; brownish grey. Very fine to fine Sand; brownish grey. Very fine to fine Sand; brownish grey. Very fine to fine Sand; brownish grey. Very fine to fine Sand; brownish grey. Very fine to fine Sand; brownish grey. Very fine to fine to fine Sand; brownish grey. Very fine to fine Sand; brownish grey. Very fine to fine Sand; brownish grey. Very fine to fine Sand; brownish grey. Very fine to fine Sand; brownish grey. Very fine to fine Sand; brownish grey. Very fine to fine Sand; brownish grey. Very fine to fine Sand; brownish grey. Very fine to fine Sand; brownish grey. Very fine to fine Sand; brownish grey. Very fine to fine Sand; brownish grey. Very fine to fine Sand; brownish grey. Very fine to fine Sand; brownish grey. Very fine to fine Sand; brownish grey. Very fine to fine Sand; brownish grey. Very fine Sand; brownish grey. Very fine Sand; brownish grey. Very fine Sand; brownish grey. Very fine Sand; brownish grey. Very fine Sand; brownish grey. Very fine Sand; brownishtoward; brownish grey. Ver																
2.0 SILT with trace of Sand; brownish grey. Very fine to fine Sand, low plasticity. Image: Complex of the second													Ĩ			
2.0 SILT with trace of Sand; brownish grey. Very fine to fine Sand, low plasticity. 2.0 -2.0m, E.O.H. -2.0m,									-				İ			
2.0 fine to fine Sand, low plasticity. Image: Sand structure Imag		SILT with trace o	f Sand · brownis	h grev Verv									i			
2.0 X X				ingrey. Very		_							i			
2.0 -2.0m, E.O.H.			, low plasticity.			2										
-2.0m, E.O.H.	2.0						× ×									2.0
		-2.0m. E.O.H.														
		,]											
													i			
2.5													İ			
	2.5															2.5

G	EOTECH Driller: YUY	SHALLOW Project: Cashmere Field Sut Client: Cashmere Park Trus Hole location: Refer to Site Plan Contractor: Image: Contractor	odivis st	ion	HOL	EL	OG 	Hole No: Job No: Logged by: Date drilled: Checked by: Date checked: Max depth:	3933 YUY 8/03/2018 NJT
	Notes: STRAT	A DESCRIPTION	USCS	Graphic Log	Water Table	Samples	S.P.I N uncorrected	SCALA PENETRON (mm/blow)	
0.0	Topsoil; dark brown		0 0	، × ، × ،		<u> </u>			
0.5		and; greyish brown. Very oist, low plasticity.		X X X X X X X X X X X X X X X	x x x x				0.5
1.0	-1.05m, saturated.			× × × × × ×	x x x x x x x				1.0
1.5					x x x x				1.5
2.0	-2.0m, E.O.H.								2.0

	2	SHALLOW	B	0	REF	IOL	EL	OG		Hole No Job No Logged by	3933	
	0	Project: Cashmere Field Sub	divi	sic	on					Date drilled	8/03/2018	
G	EOTECH	Client: Cashmere Park Trus	st							Checked by	· NJT	
		Hole location: Refer to Site Plan			ent: H					Date checked		
	Driller: YUY Notes:	Contractor:	qui	рп	ient: n	4+50		R.L:		Max depth		
				~	jc	F	es	S.P.1	s	CALA PENETRO	METER	
	STRAT	A DESCRIPTION		USCS	Graphic Log	Water Table	Samples	N uncorrected 0 50 100 0		(mm/blow) 34 50	100 150	Э
0.0			+		;					•		0.0
	Topsoil; dark browr	٦.			_ َx´					İ o		
1				ľ	$\tilde{\mathbf{x}}$					İ 🛛		
1			-	ō	່ຂັຼາ							
					~ ×							
					×~2							
				l	ົ×ັຼາ							
1		and any ich brown Man			x x							
0.5		and; greyish brown. Very loist, low plasticity.			хх							
0.5 •		ioist, iow plasticity.		-	х х					! °		0.5
					хх							
				_	хх					1		
					хх					İ.		
					хх				0	i d		
					ХХ							
1					X X							
					. × × × ×				u			
1.0 •					x x	9/03/2018						1.0
1.0					xx	03/2						1.0
					хх	/6						
	-1.1m, saturated.				хх					l Q		
				ML	хx					1		
				2	хх							
					хх							
					хх					I I I I I I I I I I I I I I I I I I I		
					ХХ					i		
					. × × × ×					F I I I I I I I I I I I I I I I I I I I		
1.5				-					(oo I		1.5
					x x x x							
					xx							
					хх							
			_		хх							
					хx					[
				H	хх			$\left\{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ $				
					хх							
1				H	ХХ							
					××							
2.0 •	2.0				¥				c	5 <u>+</u>		2.0
	-2.0m, E.O.H.											
1								1				
1										İ		
										İİ IIII		
1										i		
1								1				
2.5												2.5
2.0			_							r		∠.⊃

	andform BORE	H	OL	E	LC	C			Hole	÷#			HAC	01
	BORE Project: Cashmere Fiel For: Warren Lewis Project #: 3933 1568115.491, 517 Drill method: Hole depth: 2.50			Gri C	ontra	ctor:	IA + SP	,	L	Date s Date fin Loge Check	P Ref #: started: inished: R.L: ged by: ked By:	8/05/20 8/05/20 9.6 m VT	023)(2016)
R.L. (m)	STRATA DESCRIPTION	uscs	Graphic	DEPTH	Geological UNIT	Water & Piezo	Shear Var (kPa) 0 100 20	blow/ (calc	etrometer 00mm Ilated) 15 20			Penetron mm/blow 50	neter 34 25	o sub san
9.6 - - -	Organic Silt FILL, trace sand, trace debris, dark brown, loose, moist, non plastic; Sand, fine; Organics, rootlets; Debris, fine brick fragments	FILL		10.0' - -	FILL			* 1.8 * 1.8 * 2.0 * 2.0 * 2.0 * 2.5				55 Q 55 Q 50 Q		
- 9.1 - - -	SILT, minor sand, grey, mottled yellow brown and orange, firm moist, non plastic; Sand, fine		-X - X - X - X - X - X - X - X	2- 2- 0.5 - 2_				× 2.5 × 2.9 × 4.0 × 4.0 × 5.0 ×	7			35	25 25 25 25 25 20 25 20 20 20 20 20 20 20 20 20 20 20 20 20	2000
- 8.6 - - -		ML	. E	- - - 1.0 - - -	SPRINGSTON FORMATION			X 4.0 X 5.0 X 5.0 X 5.0 X 5.0 X 4.0X					25 20 17 20 20 20 20 25 25 25 25 25 25 25 25 25 25	
- 8.1 - - -	SAND, some silt, grey brown, medium dense, moist to wet, non sensitive; Sand, fine	SP	x	- 1.5 -	SPRINGSTO	E		× 4.0 × 4.0 × 4.0 × 3.3 × 3.3 × 3.3				33		
- - 7.6 - -	SILT, trace sand, grey, firm, moist to wet, low plasticity; Sand, fine		-X - X - X - X	- 		15min after drilling, 2.0m		× 3.1 × 4.0 × 3.3 × 3.1 × 4.0 × 3.6 × 3.6 × 3.6					25 P 25 P 25 P 28 P 28 P 28 P 28 P	
-	- 2.2m, wetter (saturated), colour change (dark grey)	W	_x _ x			15m		× 3.6 × 4.4 × 4.4 × 5.0 × 5.1 × 4.4	10.0				28 2 23 0 28 0 -18 0 28 0 28 0 15	, ,
7.1 - - - -	- 2.4m, firmer (firm to stiff) E.O.H. Target depth			2.5					<u>50</u> 					
6.6 - - -				-3.0										
- 6.1 - - -				-3.5										
- 5.6 - - -				4.0										·····
- - 5.1 - - -				4.5										
- - 4.6 -				5.0			⁰ x ²⁵ _{25ak} ⁵	D_ 5_10	15 20	7	75 50) 25	34 0	34
	ANDER Notes: R.L. Obtained from RTK survey Borehole logged in accordance with the "Guidelines for the Description of Soil and Rock for Engineering Purposes" Description of Soil and Rock for Engineering Purposes "Description of Soil and Rock for Engineering Purposes" Description of Soil and Rock for Engineering Purposes "Description of Soil and Rock for Engineering Purposes" Description of Soil and Rock for Engineering Purposes "Description of Soil and Rock for Engineering Purposes" Description of Soil and Rock for Engineering Purposes "Description of Soil and Rock for Engineering Purposes" Description of Soil and Rock for Engineering Purposes "Description of Soil and Rock for Engineering Purposes" Description of Soil and Rock for Engineering Purposes "Description of Soil and Rock for Engineering Purposes" Description of Soil and Rock for Engineering Purposes "Description of Soil and Rock for Engineering Purposes" Description of Soil and Rock for Engineering Purposes "Description of Soil and Rock for Engineering Purposes" Description of Soil and Rock for Engineering Purposes "Description of Soil and Rock for Engineering Purposes" Description of Soil and Rock for Engineering Purposes "Description of Soil and Rock for Engineering Purposes" Description of Soil and Rock for Engineering Purposes "Description of Soil and Rock for Engineering Purposes" Description of Soil and Rock for Engineering Purposes "Description of Soil and Rock for Engineering Purposes" Description of Soil and Rock for Engineering Purposes "Description of Soil and Rock for Engineering Purposes" Description of Soil and Rock for Engineering Purposes "Description of Soil and Rock for Engineering Purposes" Description of Soil and Rock for Engineering Purposes "Description of Soil and Rock for Engineering Purposes" Description of Soil and Rock for Engineering Purposes "Description of Soil and Rock for Engineering Purposes" Description of Soil and Rock for Engineering Purposes "Description of Soil and Rock for Engineering Purposes" Description of S				nd		(kPa) residua (kPa) Size: mr #: par Vane p la Penetro	erformed						

	landform	BORE	10	DL	Ε	LC	DG				Hole	e #			HA	402]
	DIOLECIS For: Project #:	1568091.778, 51755 Hand Auger			Grie	ontra	tem: N ctor: L nent: H	_FP		(E, N)	<u> </u>	Date : Date fi	P Ref # started inished R.L ged by ked By	: 8/05/ : 8/05/ : 10.5 : VT	2023 2023 m NZ\	/D(20	(16) (31)
R.L. (m)	STRATA DESCRIPTION		uscs	Graphic	DEPTH	Geological UNIT	Water & Piezo	(kP	Vane Pa) 200	Scala Pene blow/10 (calcul 5 10	00mm ated)		Scala	mm/blow			sub sarr
10.5- - -	Organic SILT, trace sand, dark brown, soft, moist, non pla fine; Organics, rootlets		OL	ہ× ۲	"0.0" 	TOPSOIL				2.9 2.9 X 2.2 X 2.0 X 2.0				45 50 50			
- - 10.0- - -	SILT, trace sand, grey, mottled orange and yellow brown moist, non plastic; Sand, fine	, firm,		× ; - × ; - × ; - × ; - × ;	- - - - -					× 1.7 × 2.0 × 2.0 × 3.3 × 3.3 × 6.0 × 6.0 × 6.7 × 5.7 × 6.7 × 6.7 × 6.7 × 6.7	5				30 0 30 0 30 17 17 17 17 15 18 15	الع مي المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع	-
- 9.5 - -	- 0.9m, colour change (dark orange brown)			x x _x _x _x	- 1.0 -	SPRINGSTON FORMATION				× 4.4 × 4.0 × 5.0 × 4.0 × 3.0					23 25 20 25 33		-
-	SAND, some silt, greyish brown, medium dense, moist; S - 1.3m, less silt (trace)	and, fine				SPRINGS				× 5.0 × 4.4 × 4.0 × 4.4 × 3.6 × 3.1					23 25 28 28 33		-
9.0 - - -	- 1.5m, wetter (wet), more sensitive (slightly)		SP		1.5					X 3.3 X 2.9 X 4.0 X 5.0 X 4.0					30 35 25 25 25		-
- 8.5 -	- 1.7m, siltier (silty), more distinct orange mottling				2.0					★ 3.6 ★ 3.3 ★ 5.0 ★ 3.6 ★ 4.0-					28 0 30 20 28 0	,	-
-	E.O.H. Target depth				_												
8.0 					2.5												-
- 7.5 - -					- 3.0 -												-
- - 7.0 -					3.5												-
-					_		-										-
6.5 - - -					-4.0 												-
- 6.0 - - -					-4.5 												-
- - 5.5 -	andform Notes: R.L. Obtained from RTK survey.				"5.0"			⁰ * 25		5 10		7	75 5	0 2	5 34 0		34
	No static groundwater encoutere Borehole logged in accordance with t	he "Guidelines for the				nd		(kP Size: #:	ne per	blows/1 are cald from mm/ recor	ulated /blow as ded and cor						_
	Description of Soil and Rock for Engin R.L. is inferred and/or interpolated ur		2005	NZGS						neter Tes Im per bl		a out to	NZS 44	uz: Test	0.5.2 &	jield	

	andform DIOJECIS		BORE	H	C	Ε	LC	DG				Hole	#		НА	03
	hoigola		Cashmere Field Warren Lewis	s Ro	ezoni	ng					l	<u> </u>	LFP R Date sta	ef #: 176 rted: 8/0	4]
	piojecis	Project #:	3933 1568107.357, 51756	651.	747	Gri	d sys	stem: _I N	IZTM200)0 (E,	N)		Date finis		5/2023	D(2016)
		Drill method: Hole depth:							IA + SP				Logge Checked	I by: VT I By: RB		npled
R.L. (m)	STRATA DESC	RIPTION		nscs	Graphic	рертн	Geological UNIT	Water & Piezo	Shear Va (kPa) 0 100 2	ь (a Penetro low/100/ calculate 10 1	mm ed)	Sc	ala Penet mm/blo 75		sub sar
9.6 -	Organic SILT, trace sand, trace fresh org		n, soft,	ОГ	x	0.0	TOPSOIL			× 1. × 1.	4			70 o 70 o		
-	moist, non plastic; Sand, fine; Organics,	rootlets.			×	_	тор			* 1 * 1 * 2 * 1	.8 .2 2.9 2.9			55 45		
_	SILT, trace sand, trace decayed organics orange brown, firm, moist, non plastic;		mottled		X ; X	_				××	3.3 3.3				30 0	
9.1 -	Organics, rootlets	Janu, Inie,			ר x'	0.5				× × ×	4.0 4.0 2.9				25-0	
-	- 0.65m, sandier (minor)				× ×;	_				*	2.9 2.5				35 -9 49 6	
-	 - 0.7m - softer (soft to firm) - 0.8m, colour change (grey), less mottli 	ng with depth		ML	⊤x ⊤x :	_	z			* 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2	.5 .0 2.5			50		
8.6 -					- x	1.0	SPRINGSTON FORMATION				2.5 2.9	•• •• ••			10 35 38	
-					-X) - X	_	TON FOI			××	2.9 3.6				35	
-						_	PRINGS.			×	3.1 3.3				33 30 30	
- 8.1 -	SAND, some silt, grey, trace mottled ora to wet, non sensitive; Sand, fine	nge, medium de	inse, moist	SP		1.5				×	2.9				35	
	- 1.5m, wetter (wet), more sensitive (sli	ghtly sensitive)				-				××××××	4.0 4.0 4.0				25	
-	SILT, some sand, grey, mottled orange, s	oft, wet, low pla	asticity;		Χ,	_					2.5 .7 2.9			60		
-	Sand, fine			ML	x x	_				×××××	2.9 2.5 .2 2.9 4.0			45	10 pd .	
7.6 -	<u>- 1.9m, firmer (firm)</u> E.O.H. Target depth					2.0				×	4.0 2.9				- 8	
-					_	_									•	
-					_	_										
7.1 -					·	2.5			•	··						
-						_										
-					_	_										
_				_		2.0										
6.6 -						3.0										
-				_		-										
-					-											
6.1 -					·	3.5						-			-	
-					_	_										
_																
5.6 -						4.0										
-					_											
-					-											
- 5.1 -						4.5										
- D.1						4.5		-								
-					-	_									-	
-						_										
4.6 -	andform Notes: R.L. Obtained	from RTK survey.			L	5.0	I	1	⁰ ≭peak (kPa)		10 1! ows/100		75	50	25 34 0	34
	Andform Notes: R.L. Obtained DOJECIS	ndwater encoutere	ed						≎residu (kPa) Size: m	al ar fron	e calcul n mm/bl recorde	ated low as				
	Borehole logged		he "Guidelines for the				nd							er NZGS Gu		
			eering Purposes" Dec nless otherwise stated		5 NZGS).			la Penetr asured as				out to NZ	S 4402: Tes	ι σ.5.2 & f	ופוט

	andform	BORE	HO	ЭL	Ε	LC)G			Hole	#			НА	.04]
	DICIECIS For:	Cashmere Fields Warren Lewis	s Re	ezoni	ng					[Date st		10/05	5/2023		
	Project #: Co-ordinates: Drill method: Hole depth:	1568369.024, 51753 Hand Auger	392.0	018	C	ontra	ctor: ∟	IZTM2000 .FP IA + SP) (E, N)	I	Date fini Logge Checke	R.L: ed by:	8.6 VT	m NZV	D(201	l 6) _{peld}
R.L. (m)	STRATA DESCRIPTION		uscs	Graphic	O DEPTH	Geological UNIT	Water & Piezo	Shear Vane (kPa) 0 100 200	Scala Penet blow/100 (calcula 5 10 1)mm ted)	S 0 100		nm/blow	meter		sub sam
8.6 -	Organic silt FILL, trace sand, trace gravel, dark brown, so non plastic; Sand, fine; Gravel, greywacke, rounded, fine Organics, rootlets		FILL		-	FILL			X 1.5 X 1.5 X 2.5 X 3.3 X 5.0 X 4.0			65 65	40	30 20 -	Þ	
-	SILT, trace decayed organics, grey, mottled orange brow brown, firm, moist, non plastic; Organics, rootlets	vn and		× : ×	_		0.7m		X 5.0 X 5.5 X 5.5 X 5.5					20 18 18	0	
8.1 -	- 0.6m, wetter (wet), more plastic (low plasticity)		-	x : x	0.5		after drilling,		* 5.0 * 3.5		· · · · · · · · · · · · · ·			20	5	
-	- 0.6m, wetter (wet), more plastic (low plasticity)		-	x x x	_	7	5 minutes after c		× 4.0 × 3.6 × 5.0 × 3.6 × 5.7					25 0 28 20 28 18	J	
7.6 -			ML	- x -×	1.0	SPRINGSTON FORMATION	15 n		* 4.4 * 4.4 * 4.4 * 4.3 * 4.6					23 23 23 23 23 22	, 	
-	 1.1m, iron staining, wetter (saturated), more plastic (n plastic) 	noderately	-	- X -X : - X	_	SPRINGSTON			X 4.3 X 5.0 X 3.6 X 3.6 X 4.4					23 0 20 28 0 28 0	5	
- 7.1 - -			-	_X : _X : _X :	1.5				X 5.0 X 4.4 X 4.0 X 4.4 X 4.4 X 4.4					23 20 23 25 23 25 23	<u>ل</u> الم	
-	SILT, trace sand, blue grey, firm, saturated, moderately Sand, fine	plastic;	MH		-				5.7 5.7 6.7 6.7 6.7 6.0 5.0 6.7 5.0 6.7 5.0 8.0 7 5.0 8.0	9.0				.18 .15 .15 .15 .17 .17 .17 .15	Joon of the second	
6.6 -	E.O.H. Target Depth				2.0				X -8.0						-8	
-					_											
6.1 -					2.5											-
-					_											
5.6 -					3.0									•		-
-					_											
- 5.1 - -					3.5											-
-					_											
- 4.6 - _				-	4.0											-
-					_									•		
- 4.1 -					4.5				=					· · · · · · · ·		-
-																
- 3.6 -	Notes: R.L. sourced from RTK survey				- 5.0-			⁰ ≭ ²⁵ _{26ak} ⁵⁰			75	50	25	5 34 0		34
								(kPa) ≎residual (kPa) Size: mm #:	from mm/b	lated low as						_
	Borehole logged in accordance with Description of Soil and Rock for Engi R.L. is inferred and/or interpolated u	neering Purposes" Dec	200			nd	Sca	ar Vane pe la Penetro asured as r	meter Test	carried					field	

	andform	BOREH	10	DL	Ε	LC)G				Hole	#			Н	405	5
	DIOLECIS For: Project #				Grie	ontra	tem: \ ctor: L nent: }	.FP		I ., N)	I	Date s Date fir	Ref #: started: nished: R.L: ged by: ced By:	10/05 10/05 8.7	/2023] 016)
R.L. (m)	STRATA DESCRIPTION		uscs	Graphic	ЭЕРТН	Geological UNIT	Water & Piezo	(kPa		ala Penetro blow/100 (calculate 5 10 1	nm ed)	10		enetro nm/blow 50			sub sam
8.7 -	Organic SILT, dark brown, soft, moist, non plastic		5	×,	0.0	TOPSOIL			.	1.3 1.3			80 2				
- - 8.2 - - - -	SILT, trace sand, grey, heavily mottled brown and orange soft, moist, non plastic; Sand, fine - 0.15m - 0.5m, cultivation with overlying layer			-X _X _X _X _X _X _X _X _X _X _X	- - - - -	TION			-X X X X X X X X X X X X X X X X X X X	1.8 2.5 2.9 2.2 2.0 2.9 1.7 2.5			65			· ·	
7.7 -	SAND, some silt, grey, strongly mottled brown, loose, we slightly sensitive; Sand, fine		SP	×	- 1.0 	SPRINGSTON FORMATION	1.5m		***	2.2 1.3 2.9 1.7 3.6 X 6.7 X 5.0 X 5.0 X 5.0 X 5.0 X 8.6 8.6 8.6			- ₇₅ (
- 7.2 - _	 1.25m, siltier (silty), iron staining 1.4m, wetter (saturated) 1.5m, more dense (medium dense to dense) 			×	1.5		minutes after drilling, 1.5m		2	X 8.6 X 6.7 X 4.3 X 5.0 X 4.4 X 5.0 X 4.4 X 5.0 X 4.4 X 5.0 X 4.4					23 20 20 23 20 23 20 23		
	SILT, blue grey, mottled orange, firm, saturated, modera	tely plastic	$_{-}$	x x x	2.0		15 mi		, , , ,	X 5.0 3.6 X 5.0 X 4.4 X 5.0 X 4.0					20 28 20 23 20 23 20 20 20		
- - - 6.2 - - -	E.O.H. Target Depth				-2.5												
- 5.7 - - -					-3.0												
5.2 - - - 4.7 -					-3.5												
4.2 -					-4.5												
					- 			0 × ∂5ak	50	5 10 13	5 20	75	5 50	25	· · · ·		34
	Notes: R.L. sourced from RTK survey Borehole logged in accordance with t					nd		(kPa ≎resid (kPa Size: #:) ual mm <i>perfo</i>	blows/100 are calcul om mm/bl recorde rmed ar	omm ated ow as ad nd corr	ected as	s per NZC	GS Guid	elines.		
	Description of Soil and Rock for Engin R.L. is inferred and/or interpolated un		005	NZGS) .					er Test per blo		i out to l	NZS 440.	2: Test	5.5.28	tield.	

	BORI	ΞH	OL	Е	LC	DG						Hole	#				H	A0	6
	Project: Cashmere Fie For: Warren Lewis Project #: 3933		ezon	ing							L		Date	FP Re e star finisl		1764 16/05/ 16/05/			1
	GEOTECH GEOTECH Co-ordinates: 1568168.871, 51 Drill method: Hole depth: 2.50	76180	.715	C	ontra	stem: N ictor: L nent: ⊦	.FP		(E,	N)			Lo	ogged	R.L: by:	9.4 I			
R.L. (m)	STRATA DESCRIPTION	uscs	Graphic	DEPTH	Geological UNIT	Water & Piezo	Shear \ (kPa 0 100	a)		a Pen blow/1 (calcu 10	00mi ilateo	m 1)		Sca		m/blow 50			
9.4 -	Organic SILT, trace fresh organics, dark brown, soft, moist, non plastic; Organics, rootlets	0	1.~	0.0	TOPSOIL				* 1	3				80	Į_				
-	SILT, grey, mottled orange, soft, moist, low plasticity	_	x x						* 1	.7					60	50			
- 8.9 -			x x	0.5					- × - ×	2.5						45 (40	, i		
-			x x			1.0m			-* -* -*	2.5						40 40	¢!		
- 8.4 -	- 0.9m, sandier (some, very fine)	2	-x	- 1.0	NO	5 minutes after drilling,		-	* * *	2.5 2.5 2.5						40 40 	0 0		
-	- 1.1m, coarser sand (fine)		- X -X - X	_	N FORMATION	15 minutes			*x ***	2.0						50 6	30 Q 25 25		
- 7.9 - -	Silty SAND, grey, strongly mottled brown, medium dense to dense, wet, slightly sensitive; Sand, fine - 1.6m, colour change (dark grey)	MS	x x x x	1.5	SPRINGSTON				×	3.3 5.0 6. 7 7 6.0	7 7 .5 .5						30 20 1 1 1	555 13 13 7	<u></u>
-			x		S					Χ Χ Χ Χ Υ Υ Υ Υ	.5 .5 .5 3.0							13 13 13 13	<u>}</u>
- 7.4 - -	SILT, dark grey, mottled brown, firm, saturated, moderately plastic	Η	x x x	2.0						K 5.7 K 5.0 K 5.6							18 20 •18	3	
-	Silty SAND, dark grey, dense, saturated, moderately sensitive; Sand, fine	WS	x x)						6 12 10 12	500
6.9 -	E.O.H. Target Depth	_	X	2.5						** <u>```</u>	10.0 10.0 (11.	.4						10 10 6 9 9	83 6 9
-				_								.4 3.3						9	3
6.4 -				3.0													•		··-·-
-																			
5.9 - -				3.5													•		
-																			
5.4 -				4.0															
- 4.9 -				4.5													•		
- 4.4 -				5.0			0.25	50	F	10	1F	20		75	50	25	34		34
	Andform DOJECIS						⁰ x peal (kPa ≎resid Size: #:	a) dual	bl ar fror	lows/ re cal m mn reco	100m culat 1/blov	nm led w as		, 3	50	25	υ 1	5	34
	Borehole logged in accordance with the "Guidelines for Description of Soil and Rock for Engineering Purposes" L R.L. is inferred and/or interpolated unless otherwise sta	Dec 200			nd	Sca	ar Van la Pene asured	tron	nete	r Te	st c	arrie							ld

BC	REH	OL	Е	LC	CO			Hole	# HA07
Project: Cashme For: Warren L		lezon	ing						LFP Ref #: 1764 Date started: 16/05/2023
GEOTECH GEOTECH Bigger GEOTECH Bigger	84, 5176195	.090	C	ontra	ctor: L	NZTM2000 LFP HA + SP	0 (E, N)		Date started: 16/05/2023 RL: 9.1 m NZVD(2016) Logged by: CLS Checked By: RBW
R.L. STRATA DESCRIPTION	USCS	Graphic	DEPTH	Geological UNIT	Water & Piezo	Shear Vane (kPa) 0 100 200	Scala Penetr blow/100 (calculat 5 10 1	mm ed)	Scala Penetrometer mm/blow 100 75 50 34 25 0
9.1 Organic silt FILL, minor gravel, trace debris, dark brown, soft, mois		V	0.0	FILL	<u> </u>		° ★.↓ ↓ ⁴ 5.0		70
non plastic; Gravel, fine to medium; Debris, brick fragments SILT, some sand, grey, mottled orange, soft, moist, low plasticity;		x					× 2.5 × 2.0 × 2.5 × 2.2 × 2.0 × 1.8		
Sand, very fine - 0.4m, less sand (nil)		X X					X 2.0 X 1.8		50 pg . 55 c .
8.6 -		x	0.5				X 25 X 22		44 2 9 4 1 9 4 1 9 4 1 9 4 1 9 4 1 9 4 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1
		×	-				X 22 X 25 X 25 X 24		40 P . 43 P .
- 0.8m - 0.85m, minor peat (woody)		x x			1.1m		X 2.1		
8.1 -		-x	1.0	NOI	5 minutes after drilling,		X 1.7 X 1.8 X 2.0		58 6
	Σ			FORMATION	tes after (× 2.9		35 😽
-		x x		ON FO	5 minu		X 3.3 X 2.7 X 44		30
7.6 - 1.4m, sandier (some), wetter (wet), firmer (firm)		x	1.5	SPRINGSTON		•	¥ 4.4 ¥ 5.0 ¥ 4.6 ¥ 5.5		20 P
		x x		SPRI			X 5.0 X 5.0		20 W 20 W
 - 1.7m, wetter (saturated) - 1.85m, more plastic (moderately plastic), less sand (nil), mottling 	T	x	-				X 5.0 X 4.3 X 5.5		20 00
becoming more distinct	5	x	2.0				X 5.0		20 20 23 - 23 - 23 - 23 - 23 - 23 - 23 -
<u>- 2.0m, colour change (dark grey)</u> Gradational Contact Silty SAND, trace decayed organics, dark grey, dense, saturated,		X X					★ 6.7 ★ 8.3 ★ 8.3 ★ 8.3 ★ 8.3		
moderately sensitive; Sand, fine; Organics, peat, woody	N N	x I					X .83	X 16.7	
-		x	-				×	13.3 12.5	80
6.6 - E.O.H. Target Depth			2.5				x 1	1.1	
		-	-		-				
-			F						
6.1 -			3.0					÷	- · · · · · · · · · · · · · · · · · · ·
		-	-						
			L						
5.6 -			3.5			•		÷	
			Ĺ						
		-	+						
5.1 -		<u>_</u>	4.0						
		-	_						
-					-				
		+	4 5						
4.6 -		[4.5						
			ŀ						
A.1 - Notes: R.L. sourced from RTK survey		1	5.0		1	⁰ x ²⁵ _{peak} ⁵⁰ (kPa)	blows/100	Omm	75 50 25 34 0 34
andform Notes: R.L. sourced from RTK survey						≎residual (kPa) Size: mm #:	from mm/b	low as	
Borehole logged in accordance with the "Guidelir Description of Soil and Rock for Engineering Purp R.L. is inferred and/or interpolated unless otherw	oses" Dec 200			nd	Sca		meter Test	carrie	rected as per NZGS Guidelines. d out to NZS 4402: Test 6.5.2 & field

To a constant of the second se	BORE	-10	C	Е	LC	DG			Hole	9 #		HA0	8
For: Project #: GEOTECH Co-ordinates: Drill method:	1568057.556, 51761 Hand Auger			Gri	ontra	ctor: L		0 (E, N)	L	Date start Date finish F Logged	ed: 17/05/ R.L: 9.0 r by: VT	2023	
R.L. STRATA DESCRIPTION	12.50	uscs	Graphic	-	UNIT along	& Mater Sefer & Piezo	Shear Var (kPa)	blow/10 (calcula)mm ted)		a Penetror		
Organic SILT, trace fresh organics, dark brown, soft, moi non plastic; Organics, rootlets	ist,	OL	° x x	"0.0" 	TOPSOIL		0 100 20	0 5 10 1.4 1.4 1.4 2.1 2.0 2.0 2.0 2.0	15 20		75 50 70 0 55 47 8 50 0	34 25	
SILT, trace sand, greyish brown, soft, moist, non plastic;	Sand, fine			- - - -		1.0m		X 2.0 X 1.7 X 1.7 X 2.0 X 2.0 X 2.2 X 2.9 X 2.5 X 2.5 X 2.0 X 1.7		80	50 60 50 50 45 85 44		
.0 - <u>- 1.0m, colour change (grey, mottled orange), wetter (w</u> plastic (nil to low plasticity)	ret), more	ML	- X	- - - -	FORMATION	15 minutes after drilling, 1.0m		× 1.7 × 1.7 ↓ 2.0 × 2.0 × 2.5 × 2.5 × 2.5 × 2.5 × 2.5 × 2.5			60 0 60 50 0 50 40 40 40		
 - 1.4m, wetter (saturated), more plastic (low plasticity) - 1.5m, firmer (firm) - 1.65m, iron staining 			- X 2 - X 2	- 1.5 -	SPRINGSTON FO			× 29 3.3 × 2.9 × 4.0 × 5.0 × 6.7 × 4.3 × 5.0			86 	25 20 20 15 23 23 20 20 20 20 20 20 20 20 20 20 20 20 20	
⁰ SILT, blue grey, mottled orange, firm to stiff, saturated, moderately plastic		MH		 				× 4.0 × 4.4 × 5.0 × 6.7 × 6.7 × 6.7 × 6.7 × 6.7 × 6.7 × 7.3 × 7.3 × 7.3	-12.5			25 6 23 0 25 5 15 0 17 0 11 0 11 0 13 8	
- 2.4m, sandier (trace to minor, fine) E.O.H. Target Depth			_ × _ ×_ x	2.5				× 8.3 × 8.3 ×-62- × 7.5					
0				3.0									
5 - 				3.5									
				4.0									
				4.5									
andform Notes: R.L. approximate only				5.0			⁰ ≭ βēak ⁵ (kPa) ⊙residua	blows/10 are calcu	0mm ilated	75	50 25	34 0	3
R.L. approximate only R.L. approximate only Borehole logged in accordance with i Description of Soil and Rock for Engir R.L. is inferred and/or interpolated u	neering Purposes" Dec 2	2005			nd	Sca	(kPa) Size: mr #: ar Vane p la Penetro	m from mm/l record	nd cor	rected as per d out to NZS			

	3			BOF	REH	OL	E	LC)G			Hole	#		HA0	9
	5		For:	Cashmere Warren Lev	Fields R wis	ezon	ing					L	Date star		5/2023	
	GEOTE	CH Co-o Drill	rdinates:	3933 1568147.578 Hand Auger 2.00	, 5175986	205	C	ontra	ctor: L nent: ⊦	IZTM2000 .FP IA + SP) (E, N)		Date finish Logged Checked	R.L: 8.9 by: VT	m NZVD(pled
R.L. (m)	STR	ATA DESCRIPTI	ON		uscs	Graphic	DEPTH	Geological UNIT	Water & Piezo	Shear Vane (kPa) 0 100 200	Scala Peneti blow/100 (calculat 5 10 1)mm ted)	Sca	la Penetr mm/blow 75 \$		o sub sam
	Organic SILT, trace sand, tr oft, moist, non plastic; Sa Organics, rootlets ILT, greyish brown, mottle	nd, fine; Debris, char	coal;		ь —	x x x x	0.0 - - - - - -	TOPSOIL			x 0.8 x 0.8 x 1.4 x 1.7 x 1.7 x 1.7 x 2.0			70 0		
7.9 -	0.9m, sandier (trace, fine ILT, grey, mottled orange		ist. low p	lasticity	₩ ₩	x x x x x x x x	- - - - - - - - - - - - - - - - - - -		20 minutes after drilling, 1.1m		X 2.1 X 2.9 X 2.5 X 2.2 X 2.2 X 2.2 X 2.2 X 2.2 X 2.3 X 2.3 X 2.3 X 2.3 X 2.3 X 2.4 X 2.4 X 2.4 X 2.5 X 2.2 X 2.3 X 2.2 X 2.2 X 2.2 X 2.3 X 2.2 X 2.2 X 2.2 X 2.2 X 2.3 X 2.2 X 2.2 X 2.2 X 2.2 X 2.3 X 2.2 X 2.2 X 2.3 X 2.2 X 2.2 X 2.3 X 2.2 X 2.2 X 2.2 X 2.3 X 2.2 X 2.2 X 2.2 X 2.3 X 2.2 X 2.2 X 2.2 X 2.3 X 2.2 X 2.2 X 2.2 X 2.3 X 2.2 X			48 45 45 45 50		
7.4 -	1.4m, more organics (pea	ty, decayed, fibrous,			Je construction	x x x x x x x x x	- - - 1.5 - -	5	20 minutes		1 X 2.0 X 2.2 X 3.1 X 3.1 X 4.0 X 3.3 X 4.0			50 45 45	33 33 25 25 30 30 30 30 30 30 30 30 30 30 30 30 30	
6.9 - <u> </u>	.O.H Target Depth					× ×	2.0				× 2.9 × 5.0 × 5.0 × 6.7					
6.4							2.5									
5.9							-3.0									
4.9							4.0									
 4.4 - ···							4.5									
3.9	Notes:	R.L. sourced from RTK	survey				5.0			⁰ ≭ ²⁵ _{25ak} ⁵⁰ (kPa)	5 10 1 blows/101		75	50	25 34 0	34
	andform DOJECIS	Borehole logged in accord Description of Soil and Ro R.L. is inferred and/or inte	lance with a	neering Purpose	es" Dec 200			nd	Sca	oresidual (kPa) size: mm #: ar Vane pe la Penetro	are calcu from mm/b recorde	lated low as ed nd corr	rected as pe d out to NZS			 Id

BORE	EH	OL	Е	LC)G			Hole	#	HA10
GEOTECH Project: Cashmere Fie For: Project #: 23933 Co-ordinates: Drill method: Hole depth: 2.80			Gri	ontra	ctor: L	IZTM2000 .FP IA + SP	L 0 (E, N)	Γ	LFP Ref #: 1 Date started: 3 Date finished: 3 R.L: 8 Logged by: F Checked By: F	80/05/2023 80/05/2023 8.8 m NZVD(201) RBW
STRATA DESCRIPTION	uscs	Graphic	ОЕРТН	Geological UNIT	Water & Piezo	Shear Van (kPa)	e Scala Penetro blow/100m (calculated 5 10 15	nm d)		blow 50 34 25 0
Organic SILT, trace fresh orgaics, dark brown, soft, moist, non plastic; Organics, rootlets	0	× ~	0.0	TOPSOIL			X 1.3 X 1.3 X 1.3 X 1.7 X 1.7		80 Q 80 Q 60	
SILT, grey, mottled orange and dark brown (cultivated), soft, moist, non plastic at in situ moisture content	W	-X - X -X -X	- - 0.5				× 2.5 × 2.2 × 2.7 × 3.5 × 4.3			40 0 1 45 0 1 37 28 20 28 20 23 0
SILT, trace sand, grey, faintly mottled orange, firm, moist to wet, low plasticity; Sand, fine		X X X			drilling, 1.0m		* 3.6 * 3.3 * 3.6			28 · p
- 0.9m, wetter (wet to saturated) - 1.0m - 1.2m, poor recovery	μ	x x	-1.0 - -		10 minutes after drilling, 1.0m		X 4.2 X 5.0 X 5.6 I X 5.0			24 0 20 0 18 0 20 0
.3		- x -x - x -x	- 1.5 -	SPRINGSTON FORMATION			X 3.8 1 X 3.3 X 4.5			26
SILT, trace decayed organics, grey to blue grey, mottled orange, firm, saturated, moderately plastic; Organics, rootlets		x x x x	2.0				× 4.8			21 - 20
- 2.3m, colour becoming more blue grey with depth	HW	- x -x	- - -2.5							
E.O.H. Target Depth		- ^- x	3.0							
3			-3.5							
.8 -			4.0							
.3 -			4.5							
Notes: LB L coursed from BTV suprem			5.0			0 ≭ ∂ ⁵ ak ⁵⁰	0 5 10 15	20	75 50	25 34 0 3
Andform Notes: R.L. sourced from RTK survey						(kPa) ≎residua (kPa) Size: mn #:	blows/100r are calcula from mm/blo recorded	ited w as d		
Borehole logged in accordance with the "Guidelines for a Description of Soil and Rock for Engineering Purposes" D R.L. is inferred and/or interpolated unless otherwise stat	ec 200			nd	Sca	la Penetro		arriea	ected as per NZGS I out to NZS 4402:	

GEOTECH	
GEOTECH	H

Project: Cashmere Fields Rezoning

DRILLHOLE BORELOG

Equipment: 8140LS (DT45)

G.L. R.L.:

	-						_
		Но	le ID:		BH1		
j		5	Sheet	:	1 of 3		
			Date	:	20/01	/2012	
G.L. R.L.:		Logg	jed by	:	PEW		
ax Depth:	21.4m	Check	ed by	:	NJT		
Location:	Refer to S	Site Plan					
COMME	<u>ENTS</u>	Drill method	Samples	Tests		SPT ws/mm	
- 1.2m , 90 overy.)% sample	Dual Tube Ø70mm					
2 - 2.7m , 1 ble recover							

	oject: Cashmere Fields Rezoning		g Co:		•••••		Max Depth: 21.4m		ked by		NJ	Т			
С	lient: Cashmere Park Trust	Ope	rator:	D. Keo	own		Location: Refer to Sit	e Plan			_	_	_		
Geological Formation	STRATA DESCRIPTION SOIL DESCRIPTION Major colour, second colour, Subordinate fraction, minor fra -plasticity, bedding, moisture, structures ROCK DESCRIPTION Colour, fabric, rock name	actions,	Graphic Log	Depth	m a W	ezo- eter and ater evels	<u>COMMENTS</u>	Drill method	Samples	Tests	2	blo	SP ws/i	mm	
	TOP SOIL; dark brown.		77	0.0	1.		-0.0 - 1.2m, 90% sample	٤							-
	Silty SAND ; yellow brown, mottled. Low plasticity.		X X X x X X X X X X X X X			/.T. .1m	recovery.	Dual Tube Ø70mm							
	 SILT with minor fine grained Sand; grey wit yellow brown mottle. Low plasticity. Trace of -1.2m, minor very fine sand. High plasticity. 		(_X_X_X X_X_X (_X_X_X X_X_X (_X_X_3)	- 1.0			-1.2 - 2.7m , 100% sample recovery.								
	-1.75m, orange brown mottle, low plasticity.		X	- 2.0	 										
	-2.25m, minor fine sand.		× × × × × × × × × × × × × × × × × × ×												
	Silty SAND ; dark grey, fine grained. Sand content increases with depth. -2.67m, grey brown.		× x × x x × x x x x x x x	- 3.0			-2.7 -4.2m , 100% sample recovery.								
	-3.5m, grey.		X X X X X X X X X X X X X X X												
	-3.9m, grey brown. -4.1 - 4.19m, interbedded SILT layer; low plas Minor very fine Sand and Organics.	sticity.	x x x x x x x x x x x x x x x x x x	- 4.0	 		-4.2 - 5.7m , 100% sample recovery.	Dual Tube							
	SILT with minor very fine SAND ; grey brown high plasticity. -4.7m, grey. -5.0m, wood fragment.	n,	× x x _x x × x x x x x x x	- 5.0	 			Dua							
	PEAT; dark brown. Soft; Occasional wood		x x x x x x x x x x x												
	fragment.	/_	X X X X	- 6.0			-5.7 -7.2m, 100% sample recovery.								
	SILT with minor very fine SAND; grey. Silty SAND; grey, fine grained. Trace of woo Peat.	ody	x x x x x x x x x x x x x x x x		 										
	-6.7m-7.1m, minor Peat.		X	- 7. 0											
	NO SAMPLE		1		-		-7.2 - 8.7m, 100% sample								
	SILT with minor very fine SAND; grey. High plasticity.		× × × × × × × × ×				recovery.								
	SAND with some Silt ; grey, fine to medium grained.		x x x x x x x x x x x x x	- 8. 0				ube							
	Gravelly fine to coarse SAND with some S dark grey. Gravel, fine to medium. -8.75m, coarse sand, minor wood fragment.	Silt;	00000 00000000000000000000000000000000				-8.7- 10.2m, 100% sample recovery.	Dual Tube							
	Sandy fine to coarse GRAVEL with some S dark grey. Subrounded; Sand, coarse.	Silt;													
			° 0 ° 0	40.0	-										

Project: Cashmere Fields Rezoning

Client: Cashmere Park Trust

DRILLHOLE BORELOG

Equipment: 8140LS (DT45)

Drilling Co: McMillan

Operator: D. Keown

G.L. R.L.:

Max Depth:

;			ole ID: Sheet		BH1 2 of 3					
		Date:			20/01/2012					
•	21.4m	Logged by: Checked by:			PEW NJT					
Location:	Refer to S	Site Plan							_	
COMME	<u>ENTS</u>	Drill method	Samples	Tests	20	<u>S</u> blow	PT /s/m		1	
3 - 11.8m , ple recove		Dual Tube Ø70mm								

Geological Formation	STRATA DESCRIPTION SOIL DESCRIPTION Major colour, second colour, Subordinate fraction, minor fractions, - plasticity, bedding, moisture, structures ROCK DESCRIPTION Colour, fabric, rock name	Grapl	Depth	Piezo- meter and Water Levels	COMMENTS	Drill method	Samples	Tests	SPT blows/mm
	Sandy fine to coarse GRAVEL with some Silt ; continued. -10.0m, minor cobble; decrease in sand.				-10.3 - 11.8m, 100% sample recovery.	Dual Tube Ø70mm			
	Medium to coarse SAND with some Silt ; dark grey. Minor wood fragments. -11.3m, coarse sand. Gravelly coarse SAND ; Gravel, fine to coarse, subrounded. NO SAMPLE Coarse SAND ; dark grey.	x x x x x x x x x x x x x x x	-11:0		-11.8 - 13.3m, 100%			11.8 SPT	12
	Gravelly coarse SAND; dark grey. Gravel, fine to coarse. Medium dense to dense. Sandy fine to coarse GRAVEL with some Silt; dark grey. Sand, coarse; some organic and wood fragments. Medium dense to dense. SILT with fine Sand; grey; low to medium	000 000 000 000 000 000 000 000	13:0						<u>†</u> 9′ 26/300mm
	plasticity. Medium dense to dense. -12.9m, interbedded fine to medium Sand. Plasticity increases with depth. NO SAMPLE Medium to coarse SAND ; brown grey to dark grey. Medium dense. Coarse SAND with interbedded Silt ; dark	X X X	-14.0		-13.3 - 16.4m, 100% sample recovery.			13.3 SPT	I2 10 11 21/300mm
	grey. High plasticity. Medium dense. Sandy fine to coarse GRAVEL with inter- bedded Silt ; dark grey. Gravel, subrounded; Sand, coarse. Silt increases with depth. SILT with minor very fine Sand ; dark grey;	0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x	-15:0			Dual Tube		14.8 SPT	Įo
	high plasticity. Minor Peat and wood fragments -15.1m, interbedded fine to medium Sand. Soft. Very fine SAND with some Silt ; dark grey. -15.8m, medium to coarse Sand; grey brown. -15.9m, fine Sand; grey.								16 6/300mm
	SILT with Peat ; dark brown to dark grey. Medium to high plasticity; Soft. -16.65m, decrease Silt. -16.75m, increase Silt.	× × × × × × × × × × × × × × × × × × ×	-17.0		- 16.4 - 17.9m , 100% sample recovery.			16.4 SPT	[0 [5 [5 10/300mm
	-17.25m, increase organic content; high plasticity. -17.75m, low plasticity. -17.85m, high plasticity.	× ~ × × × × × × × × × × × × × × × × × ×			- 17.9 - 19.4m , 100%			17.9 SPT	[0
	-18.8m, wood fragment. -19.0m, wood fragment.	× × × × × × × ×			sample recovery.	Dual Tube			14 6/300mm
	Silty fine SAND with minor PEAT; dark grey. Silty Sandy fine to coarse GRAVEL; dark grey to yellow brown. Gravel, subrounded; Sand, coarse; dense.	X X X 0 X 0 X 0 X 0 X 0 X 0 X 0	19:0		-19.4 - 20.9m , 100% sample recovery.			19.4 SPT	[16 [18 [18] 36/300mm

Project: Cashmere Fields Rezoning

Client: Cashmere Park Trust

DRILLHOLE BORELOG

Equipment: 8140LS (DT45)

Drilling Co: McMillan

Operator: D. Keown

G.L. R.L.:

Location:

Max Depth:

	Но	le ID:		BH1
	5	Sheet	:	3 of 3
		Date	:	20/01/2012
	Logo	jed by	:	PEW
21.4m	Check	ed by	:	NJT
Refer to \$	Site Plan			
<u>NTS</u>	Drill method	Samples	Tests	SPT blows/mm
100% ry.	Dual Tube Ø70mm		20.9 SPT	

al on	STRATA DESCRIPTION	Log			ezo-	<u>COMMENTS</u>	рог	s		ODT	-
Geological Formation	Major colour, second colour, Subordinate fraction, minor fractions, -plasticity, bedding, moisture, structures ROCK DESCRIPTION	Graphic Log	Depth	a	eter Ind ater		Drill method	Samples	Tests	<u>SPT</u> blows/mm	
For For	Colour, fabric, rock name				vels		Dril	S	Ĕ	20 40 60 80	0
	Silty Sandy fine to coarse GRAVEL; dark grey to yellow brown. Gravel subrounded: Sand	0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 0 0 2 0					шш				
	to yellow brown. Gravel, subrounded; Sand, coarse; dense. (continued)	* ~ 0 * ~ 0 * ~ ~ ~ ~ ~				-19.4 - 20.9m, 100% sample recovery.	Dual Tube Ø70mm				
		0x ° x0 x ° x ° x x ° x ° x				sample recovery.	al Tube				
	NO SAMPLE	• XOX	-21.0	-			D		20.9 SPT	_ _11	
										11 6 10	
	21.4m E.O.H.			-						16/300mm	
				-							
			-22.0								
				-							
			-23.0								
			-24.0	-							
							Tube				
							Dual Tube				
			-25:0	-							
			-26.0	-							
			-27.0	-	ļ						
			-28.0	-							
							0				
				-			Dual Tube				
				-			Dua				
			-29.0	- -							-
				-							
				-							
				-							
			-30.0	ſ.	I		I	I			_

			2	r.		
G	E	0	т	E	С	н

Geological Formation

Project: Cashmere Fields Rezoning

STRATA DESCRIPTION SOIL DESCRIPTION Major colour, second colour, Subordinate fraction, minor fractions, - plasticity, bedding, moisture, structures ROCK DESCRIPTION

Client: Cashmere Park Trust

Colour, fabric, rock name

DRILLHOLE BORELOG

Equipment: 8140LS (DT45)

Depth

Piezo-meter

and Water

Levels

Drilling Co: McMillan

Graphic Log

Operator: D. Keown

G.L. R.L.:

Location:

COMMENTS

21.4m

Refer to

Max Depth:

Γ	Но	le ID:		В	H 2	2			
	Ş	Sheet		1 01	53				
			20/	01/2	201	2			
	Logo		PEV	V					
Site	Check e Plan	ked by	:		NJT				
	Drill method	Samples	Tests		k 20	S plow 40	PT /s/m 60		
)	Dual Tube Ø70mm								

Colour, fabric, rock name		0.0						20 4	
TOP SOIL; dark brown, organic, wood fragments	5.//	1		-0.0 - 1.2m, 90% sample	ш				
	//	1		recovery.	Dual Tube Ø70mm				
SAND with minor Silt; dark brown with yellow-			WT.		Tube				
brown mottling; fine to medium grained.	x x]		7	Dual				
1 2m dark grov	x	- 1. 0	FΥ	4.2. 2.7 400%					
-1.2m, dark grey. -1.4, very fine to fine sand.	x x]		-1.2 - 2.7m, 100% sample recovery.					
	x]		•					
-1.7m, increase in Silt content.	x x]							
	×	- 2.0	 						
	x x]							
Silty very fine to fine SAND; grey-brown with	x x	*	-						
yellow-brown mottling.	x x x x x		-	-2.7 -4.2m , 100% sample					
-2.7m, dark grey, very fine.	X X X X X	- 3.0	-	recovery.					
	x x x x x	- 3.0							
SILT with minor very fine grained Sand; dark	x x	,							
grey with yellow-brown mottle. High plasticity.	X X X		-						
Silty very fine SAND; dark grey.	x x x x x								
	X X X X X	- 4.0							
	x x x x x			-4.2 - 5.7m , 100%	lbe				
SAND; dark grey, very fine to fine grained; trace	X X	s		sample recovery.	Dual Tube				
of Silt.					Ō				
-4.7m, fine to medium sand. -5.0m, fine to coarse sand.		- 5.0	-						
Silty very fine to fine SAND; dark grey.	x x	,							
SAND; dark grey, medium to coarse grained. -4.7m, coarse	_			-5.7 -7.2m, 100% sample					
				recovery.					
Silty very fine to fine SAND; dark grey.	x x x x x								
	X X X X X X X X	·	·						
	X X	,							
SILT; dark grey. High plasticity; trace of very fine Sand.	x x x x x		+- 						
Peaty SILT; dark grey.	× ×	7.0 1	F.						
SILT; dark grey. High plasticity; trace of very				-7.2 - 8.2m, 100% sample recovery.					
fine Sand.	× ×	×							
SILT; dark grey. High plasticity; trace of very	<u>, x</u> , x		+- -						
fine Sand.	x x x x x								
Peaty SILT ; dark grey. Trace of very fine Sand and wood fragments.				-8.2- 10.2m , 100%	~				
Sandy SILT; dark grey. High plasticity, fine			-	sample recovery.	Dual Tube				
Sand. Sandy medium to coarse GRAVEL; dark grey.	A				Dual		16.4		
Subrounded; Sand, fine to coarse.	8°.9° 0	- 9.0	- -				SPT	4 6	
SAND; dark grey; Medium to coarse.	000							1 10	
Gravelly medium to coarse SAND; dark grey.	· O							16/3	00mm
Gravel, subrounded, medium to coarse.	°,		-						
grey. Sand, fine to coarse; Gravel, subrounded.	۰Ô		<u> -</u>						
	۰Ö								

GEOTE		
GEOTE	С	н

Project: Cashmere Fields Rezoning

Client: Cashmere Park Trust

DRILLHOLE BORELOG

Equipment: 8140LS (DT45)

Drilling Co: McMillan

Operator: D. Keown

G.L. R.L.:

Location:

Max Depth:

	Но	le ID:		BH 2
		Sheet	::	2 of 3
		Date	:	20/01/2012
21.4m		ged by ked by		PEW NJT
Refer to S		····,		-
<u>NTS</u>	Drill method	Samples	Tests	SPT blows/mm
	Ā			20 40 60 80
100% ry.	Dual Tube Ø70mm		10.3 SPT	I 10 10 13 23/300mm

Geological Formation	SOIL DESCRIPTION Major colour, second colour, Subordinate fraction, minor fractions - plasticity, bedding, moisture, structures ROCK DESCRIPTION Colour, fabric, rock name	Grap	0 Depth	Piezo- meter and Water Levels	COMMENTS	Drill method	Samples	Tests	SPT blows/mm
	Gravelly medium to coarse SAND ; dark grey. Gravel, medium to coarse.	0 0 0 0	10.0	-		E		10.3	
	SAND ; dark grey. Medium to coarse grained; medium dense to loose (density decreases with depth).				-10.3 - 11.8m, 100% sample recovery.	Dual Tube Ø70mm		SPT	I 10 I 10 I 13 23/300mm
	-11.4 to 11.6m, wood fragments.		-11.0		- 11.8 - 13.3m , 100%			11.8 SPT	
	-12.7 to 12.9m, some Peat.		-12:0		sample recovery.				T4 T2 6/300mm
			-13:0		-13.3 - 14.8m , 100% sample recovery.			13.3 SPT	[1 1 [4 5/300mm
			-14.0		-14.8 - 16.4m , 100%	Dual Tube		14.8 SPT	[3
	Silty fine to medium SAND; dark grey. Loose.	x x			Campio rocovery.				<u>†</u> 4 7/300mm
			-16.0	 -					
	NO SAMPLE			-				16.4	+
	SAND; dark grey; medium to coarse. Dense.			 	-16.4 - 17.9m, 100% sample recovery.			SPT	12 13 17 30/300m
	- Sandy fine to coarse GRAVEL; dark grey. Gravel, subrounded; Sand,coarse; dense. -17.6m, yellow brown Sand.		-17.0	 					JUJUUM
	NO SAMPLE	000						17.9 SPT	I 11
			-18.0		-17.9 - 19.4m, 75% sample recovery.	e			I 11 25 14 39/300r
	GRAVEL ; dark grey. Medium to coarse; dense. Sandy fine to coarse GRAVEL ; dark grey. Gravel, subrounded; Sand,coarse; dense.		-19.0			Dual Tube			
	NO SAMPLE	000		 	-19.4 - 20.9m, 0% sample recovery.			19.4 SPT	I 10 112 122 34/300n

			2	5		
G	E	0	т	E	С	н

Project: Cashmere Fields Rezoning

Client: Cashmere Park Trust

DRILLHOLE BORELOG

Equipment: 8140LS (DT45)

Drilling Co: McMillan

Operator: D. Keown

G.L. R.L.:

Max Depth:

	Но	le ID:		BH 2			
;	5	Sheet	:	3 of 3			
		Date	:	20/01/2012			
G.L. R.L.:	Logg	jed by	:	PEW			
ax Depth: 21.4m		ked by	:	NJT			
Location: Refer to S	Site Plan						
<u>COMMENTS</u>	Drill method	Samples	Tests	SPT blows/mm 20 40 60 80			
	Dual Tube Ø70mm		20.9 SPT	111 20 20 40/300mm			

	STRATA DESCRIPTION	D D		own		COMMENTO	σ	1	1		
Geological Formation	SOIL DESCRIPTION Major colour, second colour, Subordinate fraction, minor fractions - plasticity, bedding, moisture, structures ROCK DESCRIPTION	Graphic Log	Depth	Piezo mete and Wate	er 1 er	<u>COMMENTS</u>	Drill method	Samples	Tests	b	SPT plows/mm
Оŭ	Colour, fabric, rock name	U U	<u> </u>	Leve	IS		Ō			20	40 60 80
	NO SAMPLE			-			Ę				
							Dual Tube Ø70mm				
							ube (
				-			ual T		20.9		
			-21.0						SPT		I 11
				-							20 20
	21.4m E.O.H.										40/300m
	21.4m E.O.H.			-							
			-22.0	F							
				-							
				-							
			-23.0	-							
			-23:0	E							
				-							
			-24.0	-							
				-			0				
				-			Dual Tube				
				-			Dual				
				-							
			-25:0								
				-							
				-							
				-							
				-							
			-26.0	-							
				-							
				Ē							
				-							
			-27.0	-							
				-							
				-							
				-							
			-28.0	<u> </u>							
				-			Lube				
				-			Dual Tube				
				-							
			-29.0	-							
				-							
				F							
				E							
				-							

TONKIN & TAYLOR LTD

BOREHOLE LOG

BOREHOLE No:S33 BH-Sc Hole Location: 200 Cashmere Road

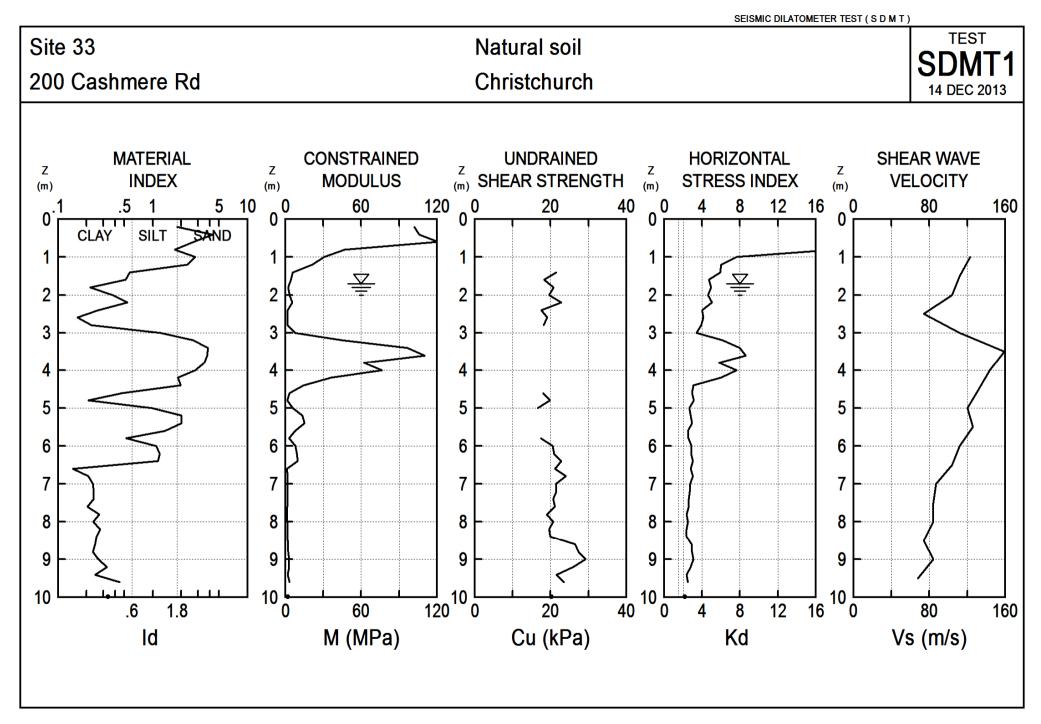
SHEET 1 OF 2

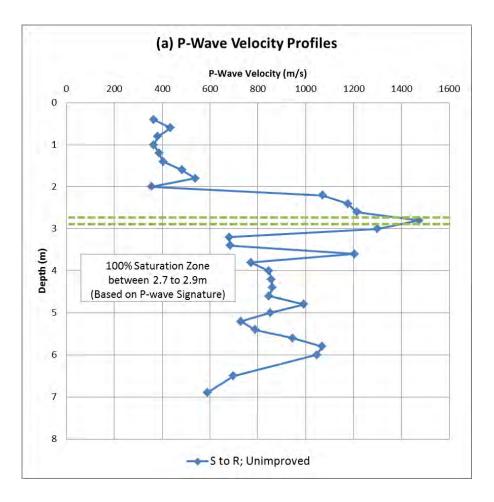
CO-ORDINATES: 51	7551	9.7	7 m	۱N	dance						N: 200 PE: Fi		/ultio	drill - XL	HC	DLE STARTED: 21/2/14		
1568352.4 mE R.L.:										DRILL TYPE: Fraste Multidrill - XL HOLE STARTED: 21/2/14 HOLE FINISHED: 21/2/14 DRILL METHOD: Sonic, 95.2% efficiency DRILLED BY: Prodrill - Cam								
R.L.: DATUM:									DRII	I FII	JID: D	rill pro	, ,			RILLED BY: Prodrill - Cam GGED BY: JXXM CHECKED: DAA		
GEOLOGICAL											<u> </u>			ENGINEE		DESCRIPTION		
Geological Unit, Seneric Name, Drigin, Vineral Composition.	FLUID LOSS	WATER	CORE RECOVERY (%)	МЕТНОD	TESTS	SAMPLES	R.L. (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	SHEAR STRENGTH (kPa)		DEFECT SPACING (mm)	SOIL DESCRIPTION Soil type, minor components, plasticity or particle size, colour. ROCK DESCRIPTION Substance: Rock type, particle size, colour, minor components. Defects: Type, inclination, thickness, roughness, filing.		
Tanaail	FLL	WA	<u>S</u>	ME.	CAS	SAN	R.L	DEI	B B B	7 ML	₽ Ö M	STF S	232 223 111	829882-99 899882-99	8000 1920 1920 1920			
Topsoil Yaldhurst Member of the Springston Formation		4	100	Sonic				0.5		ML	М	F				Topsoil: SILT, with minor rootlets; dark grey. Rootlets, up to 4mm diameter. SILT, with trace rootlets; dark grey. Low plasticity; rootlets, fine. 0.30m: Becomes brownish grey, with trace iron staining and orange mottles. 0.50m: Grades to trace sand with rootlets absent. Sand, fine. 0.70m: Grades to minor sand. 0.90m: Grades to sandy. Becomes non-plastic.		
		03/03/2014						-	××	SM	W					Silty fine SAND; brownish grey, with trace iron staining.		
		1 03/						-	× × × × × × × × × ×	ML		VS S F				SILT, with minor sand and trace organics; brownish grey, with trace iron staining. Low plasticity, quick; sand, fine; organics, fibrous. 1.50m: Grades to sand absent. Becomes low to moderate plasticity, slow. 1.60m: Grades to trace sand. Becomes low plasticity; sand, fine.		
			73	Sonic	*PI; PSD @2.05 - 2			2.0		SM		1				1.70m: Grades to sand absent. Becomes grey, with iron staining absent, low to moderate plasticity, very slow. 1.95m: Grades to trace sand. Becomes slow; sand, fine. 2.30m: Grades to some sand. Becomes low plasticity, quick. Silty fine SAND, with trace organics; grey. Organics, fibrous. No Recovery: 2.60 - 3.00m.		
								3.0	× × × × × × × × ×							3.20m: Grades to some silt.		
				ic				3.5	× × × × × ×							3.45m: Grades to silty, with thin silt laminations and organics absent.		
			81	Sonic	*FC; WS @3.8 - 3.9 *PI; FC & @4.05 - 4	m WC		4.0	× × × ×	ML SP/ ML		F F F				 3.80m: 50mm bed of SILT with some sand. Non-plastic. 3.85m: Grades to minor silt with silt laminations absent. SILT, with some sand; grey. Non-plastic, quick; sand, fine. 4.05m: Grades to minor sand. Becomes low plasticity. 4.20m: Grades to sandy. Becomes 		
					*WS & W @4.9 - 5.0			- - - - - - - - - - 	× × × × ×	SM						non-plastic. <u>No Recovery: 4.30 - 4.60m.</u> Silty fine SAND; grey.		
og Scale 1:25			I		<u>w</u> +.9 - 3.0	/111 /		5 -	lv .							JXXM.200CASHMERERDBOREHOLE.GPJ 23-May-		

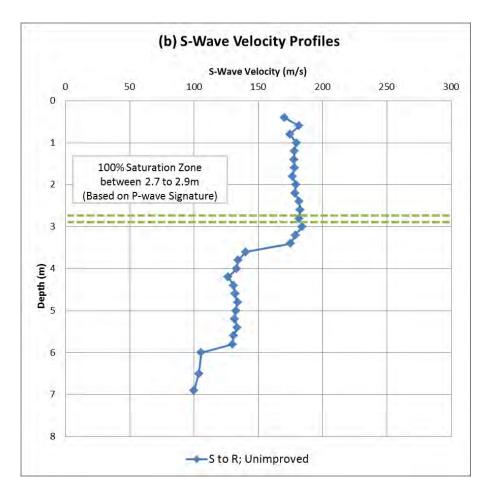
TONKIN & TAYLOR LTD

BOREHOLE LOG

BOREHOLE No:S33 BH-Sc Hole Location: 200 Cashmere Road

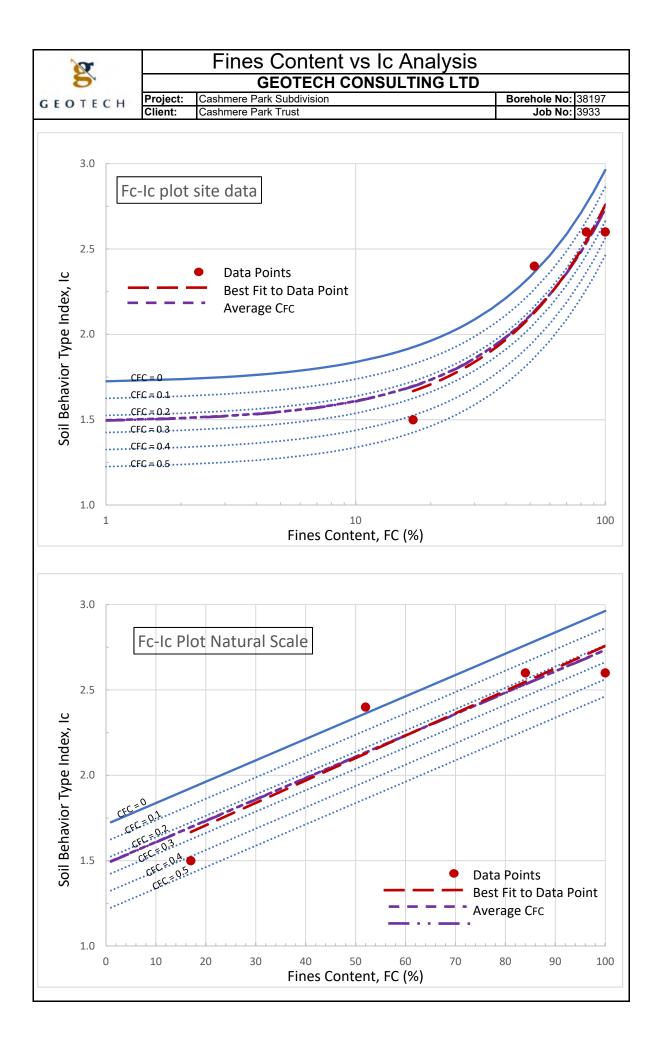

SHEET 2 OF 2

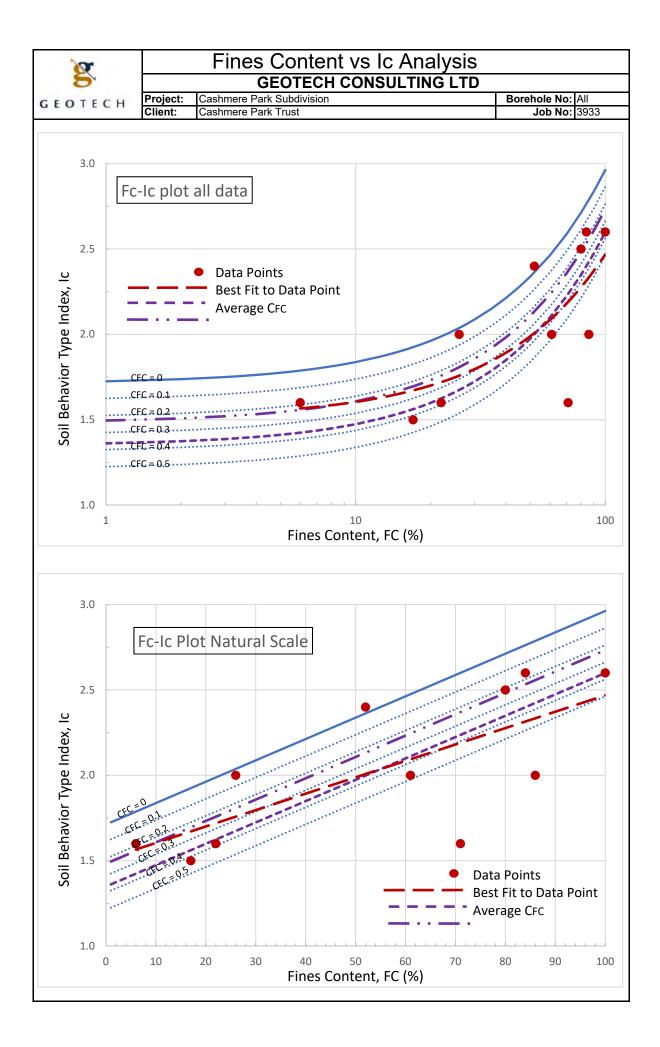

PROJECT: Silty Soil Liquefaction Guidance											LOCATION: 200 Cashmere Road JOB No: 53399.000									
CO-ORDINATES: 5175519.77 mN 1568352.4 mE											DRILL TYPE: Fraste Multidrill - XL HOLE STARTED: 21/2/14 HOLE FINISHED: 21/2/14									
RL:										DRII	_L ME	THOD	: Son	IC, 98	5.2% efficiency DRILLED BY: Prodrill - Cam					
DATUM: GEOLOGICAL										DRII	L FL	JID: D	rill pro				GGED BY: JXXM CHECKED: DAA			
GEOLOGICAL UNIT,			Г									U			1		SOIL DESCRIPTION			
GENERIC NAME, DRIGIN,			6								MBOL	WEATHERING		SHEAR STRENGTH (kPa)	COMPRESSIVE STRENGTH (MPa)	DEFECT SPACING (mm)	Soil type, minor components, plasticity or particle size, colour.			
MINERAL COMPOSITION.			ERY (%			TESTS					YS NC	WEAT	UNSITI NO	R STR (kPa)	APRES RENG (MPa	CT SP (mm)	ROCK DESCRIPTION			
	SSC		COVE			TESTS	s		Ê	C L OG	ICATIO		THIDE	SHEAI	CO	DEFE	Substance: Rock type, particle size, colour, minor components.			
	FLUID LOSS	WATER	CORE RECOVERY (%)	METHOD	CASING		SAMPLES	R.L. (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MOISTURE \ CONDITION	SSI			.88	Defects: Type inclination thickness			
Yaldhurst Member of		Š	1 N	ž	Ċ		SA	Ľ.	8	ö X	ਹ SM	≚ ö W	CL ST	2885	²⁰ 22222	250 2000	Silty fine SAND; grey.			
the Springston Formation									-	× ×										
Toffiation				ic.					-	××										
			100	Sonic					-	× ×	ML		F				SILT, with some sand and trace organics; grey. Non-plastic, quick; sand, fine;			
						*PI; PSD &	w	ŗ	5.5-	× × ×							organics, fibrous.			
						@5.5 - 5.6r			-	× × ×							5.50m: Grades to sandy. 5.65m: Grades to some sand.			
									-	×'×							5.75m: Grades to trace sand. Becomes low			
						*PI & WC			-	×××							plasticity, slow.			
						@5.9 - 6.0r	n		6.0-	××			S				6.05m: Becomes quick.			
									-	× × ×										
									-	××			VS				6.30m: Grades to sand and organics absent.			
									6.5-	××							Becomes low to moderate plasticity, slow.			
									0.5-	×××										
									-	××										
			100	Sonic					-	×××										
				s					7.0-	× × ×										
									-	××							7.05m: Grades to trace fibrous organics.			
									-	×××										
									-	×										
						*PI; PSD &		2	7.5-	× × × ×										
						@7.4 - 7.5r			-	×××			S				7.60m: Becomes very slow.			
									-	×			F				7.75m: Becomes moderate plasticity.			
									-	×××										
									8.0-	×			S				8.00m: Becomes low to moderate plasticity.			
									-	x w×							8.10m: Grades to minor organics.			
			100	iic					-	× ×										
			19	Sonic					-	×v										
									8.5-	* ×							8.50m: Grades to trace fine sand.			
									-											
									-	×							8.80m: Grades to trace organics.			
									- - 9.0-	×			F							
									9.0-	×	SM		-				non-plastic, quick.			
									-	×							Silty fine SAND, with trace organics and silt laminations; grey. Organics, fibrous.			
									-	ιτη τη αυτή Χιτη τη	Pt SM						Fibrous WOOD; brown.			
				<u>ic</u>					- - 9.5-	××	1416						Silty fine SAND, with trace organics; grey. Organics, fibrous.			
			100	Sonic					-	×							9.50m: Grades to silt laminations absent.			
									-	××										
									-	××							End of Borehole at 10.00m bgl.			
og Scale 1:25									10 -	×							Target Depth Reached.			



				SOIL BORING LOG						
Gene					Project Number n/a	Boring Number DM-2				
					Dames & Moore Con					
	**************************************	300,00		Comments: (This is a simplified log. Detailed logging will be provided.)						
Project Name: Mini-Cone/Contin		nuous D&M		te 33"), Christchurch, New Zealand						
Elevatio		and Equipm			Drilling Contractor: McMillan Drilling Servi					
Mud Lev				ine 2016, 8:30AM)	Mud-rotary, Track rig (Geoprobe 8140LS) 2016, 8:30AM) Start/Finish: 3 June 2016 (Friday) - 7 June 2016 (Tuesday)					
Logger:				(UC Berkeley)						
below e (m)	Sample			D&M Sampling Pressure	Soil Description	Comments				
Depth below Surface (m)	Interval	Number and Type	Recovery (%)	(psi)	Soil Name, Color, Moisture Content, Relative Density or Consistency, Soil Structure, Mineralogy, USCS Group Symbol	Depth of Casing, Drilling Rate, Drilling Fluid Loss, Tests and Instrumentation				
						Hand-augered (0 - 0.5m)				
	0.5- 0.89 m	1U (DM)	100%	350-400 psi	Gray sandy silt	No casing. Sampler not fully advanced* (estimated advancement approx. 39 cm).				
1	0.95- 1.40 m	2U (DM)	100%	200 psi	Gray sandy silt	No casing.				
	1.40- 1.85 m	3U (DM)	100%	100 psi	Gray sandy silt	Casing at 0.78 m.				
2	1.85- 2.30 m	4U (DM)	99%	100 psi	Gray clayey silt	Casing at 0.78 m.				
	2.30- 2.75 m	5U (DM)	101%	100 psi	Gray clayey silt	Casing at 1.85 m.				
3	2.75- 3.20 m	6U (DM)	101%	100 psi	Gray sandy silt to silty sand	Casing at 1.85 m.				
	3.20- 3.65 m	7U (DM)	100%	150-250 psi	Gray fine sand, some silt	Casing at 2.90 m.				
4	3.65- 4.10 m	8U (DM)	101%	150-250 psi	Gray silty fine sand (silt/organic bands and laminations)	Casing at 2.90 m.				
	4.10- 4.55 m	9U (DM)	95%	75 psi	Gray fine sand, some silt & Gray silt with laminations	Casing at 3.80 m.				
5	4.55- 5.00 m	10U (DM)	101%	75 psi	Gray silt & silty fine sand (organic/sand laminations and partings)	Casing at 4.25 m.				
-	5.00- 5.45 m	11U (DM)	102%	50 psi	Layered silty sand and silt	Casing at 4.25 m.				
	5.45- 5.90 m	12U (DM)	98%	100 psi	Layered silty sand and silt	Casing at 4.25 m.				
6	5.90- 6.35 m	13U (DM)	100%	50 psi	Layered silt	Casing at 5.34 m.				
	6.35- 6.80 m	14U (DM)	101%	75 psi	Layered silt	Casing at 5.34 m.				
7				*Note: Full sample	r advancement = 45 cm.	End of boring at 6.80 m				

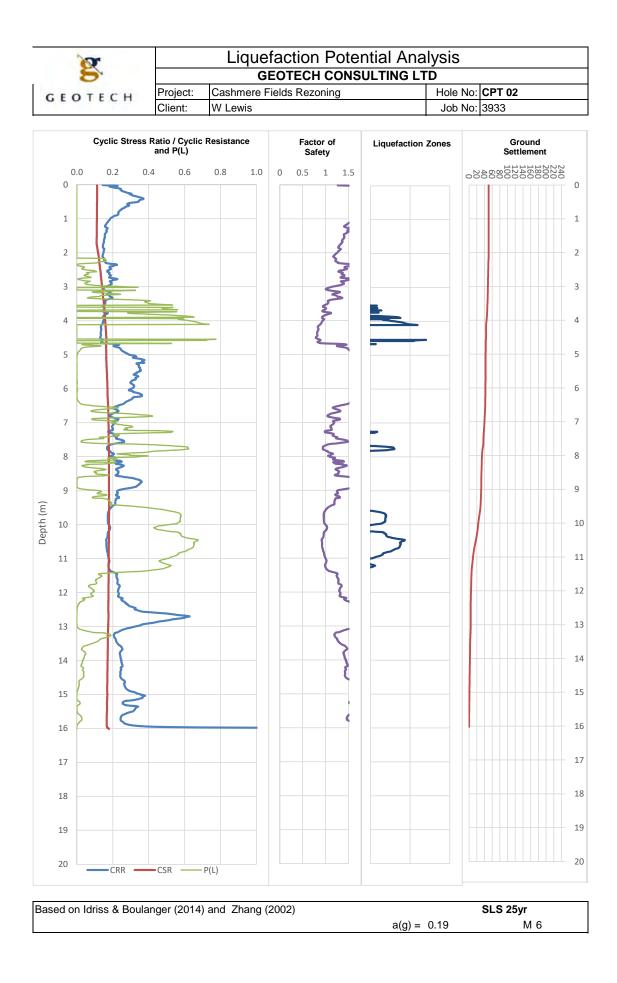
Appendix 3

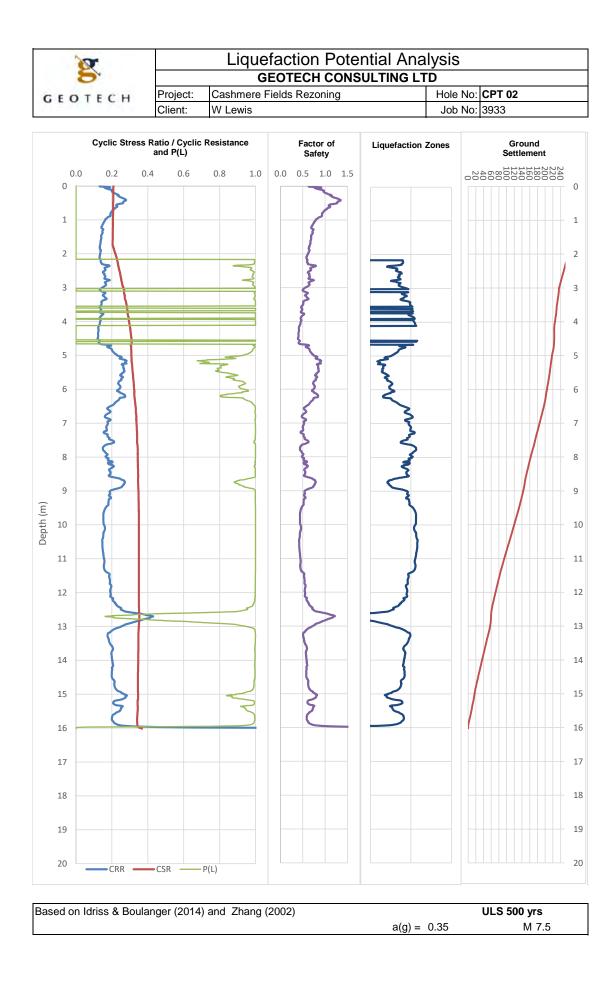

Lab data and C_{FC} Analysis

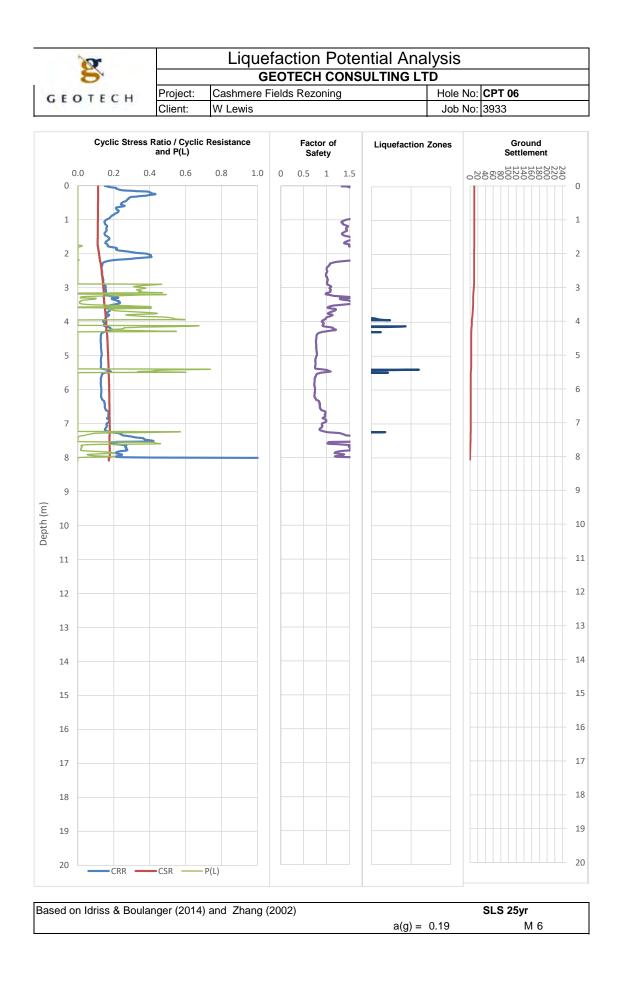

Research Project for Silty Soil Liquefaction Guidance - Lab Schedule

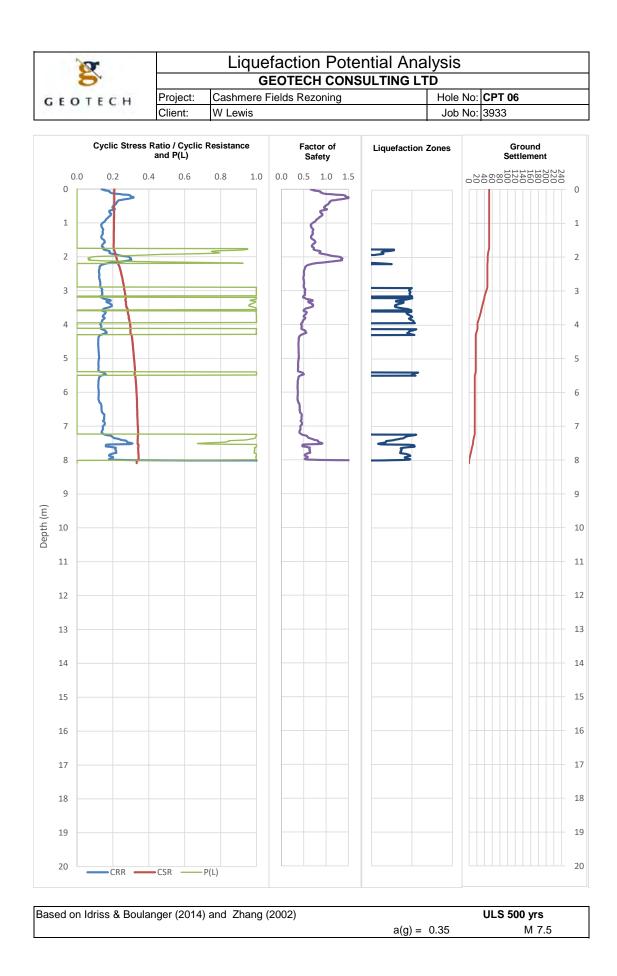
PI	Atterberg Limits
FC	Wet seive at 75µm and 63µm to provide fines content
WS	Wet seive particle size distribution
Hyd	Hydrometer particle size distribution
Full PSD	Wet seive plus hydrometer PSD
Vis Insp	Visual inspection has confirmed ~100% fines
WC	Water content on as-received sample
Zip Lock Core	Sample was bagged on site soon after drilling, so expected to be close to natural water content

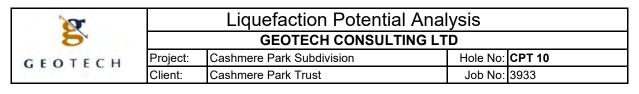
Site 33 - 200 Cashmere Road

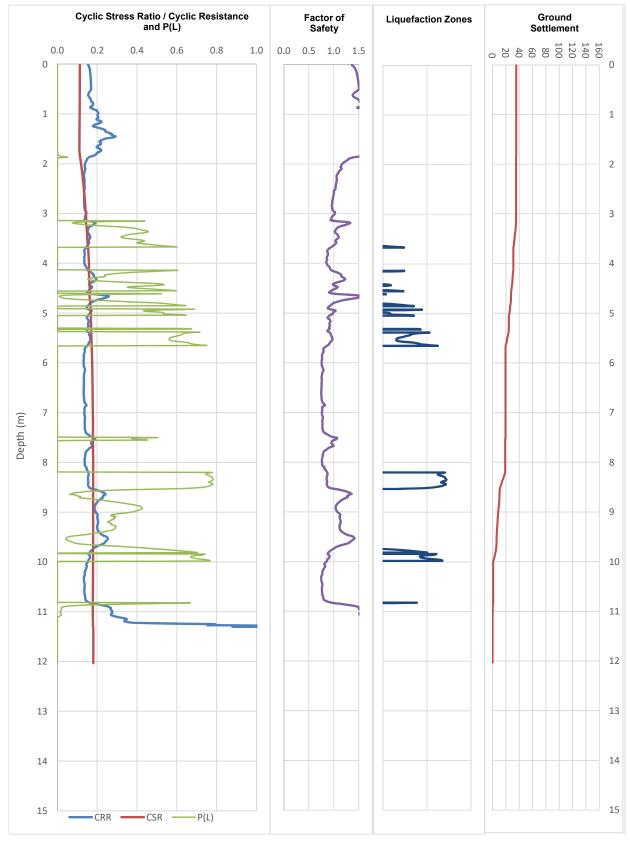

Depth	Description	PI	FC	ws	Full PSD	wc	Hyd	Approx CPT I _c	Vis Insp	Zip Lock Core	Fines content results (75µm)	Lab
2.05 - 2.15m	Clayey SILT/Silty CLAY; minor cyclic softening	Х			Х	Х		3.05			100%	Geotechnics
3.80 - 3.90m	SAND with some silt; classic liquefaction		Х	Х		Х		1.50			17%	Geotechnics
4.05 - 4.15m	SILT, with minor sand; low plasticity, quick.	Х	Х			Х		2.85		Yes	96%	Geotechnics
4.90 - 5.00m	Silty fine SAND; classic liquefaction, non-plastic			Х		Х		2.40			52%	Geotechnics
5.50 - 5.60m	Low plasticity, softening, without dilation	Х			Х	Х		2.60		Yes	84%	Geotechnics
5.90 - 6.00m	Clayey SILT; low PI, cyclic softening, not much dilatancy, MH?, elastic silt?, ~100% fines	x				х		2.60	Yes		100%	Geotechnics
7.40 - 7.50m	Clayey SILT; low to moderate PI, minor cyclic softening,~100% fines	Х			Х	Х		3.30			99%	Geotechnics

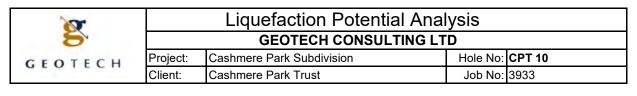


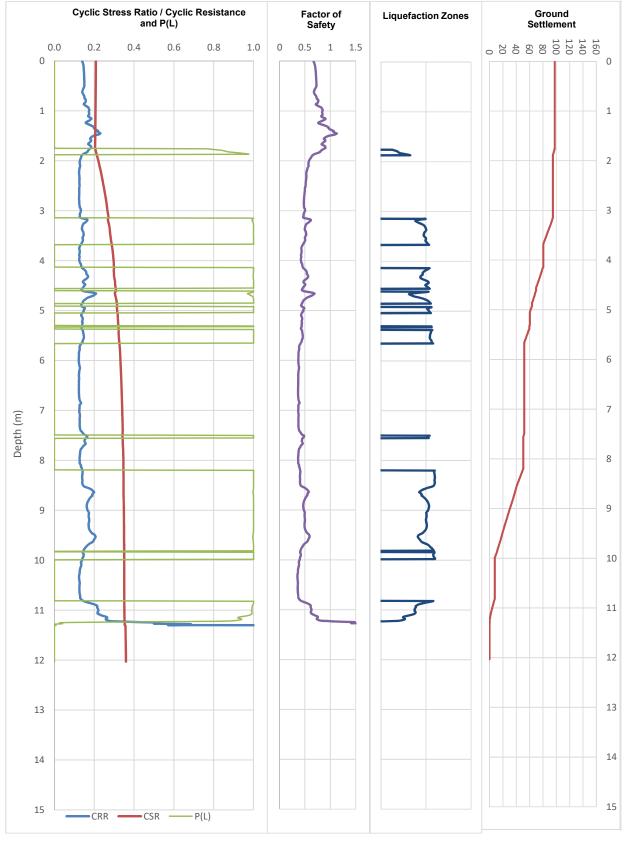


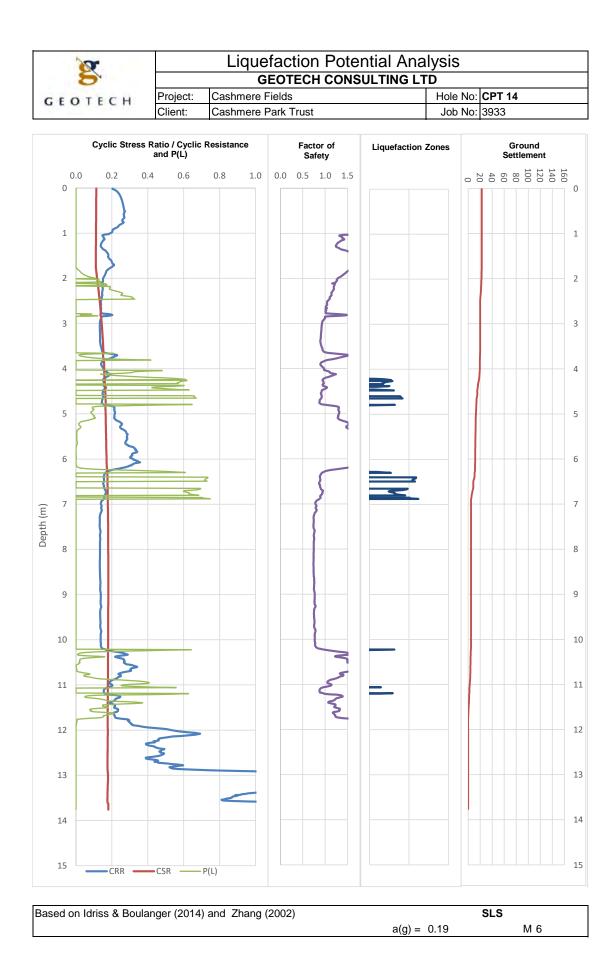

Appendix 4


Liquefaction Profiles

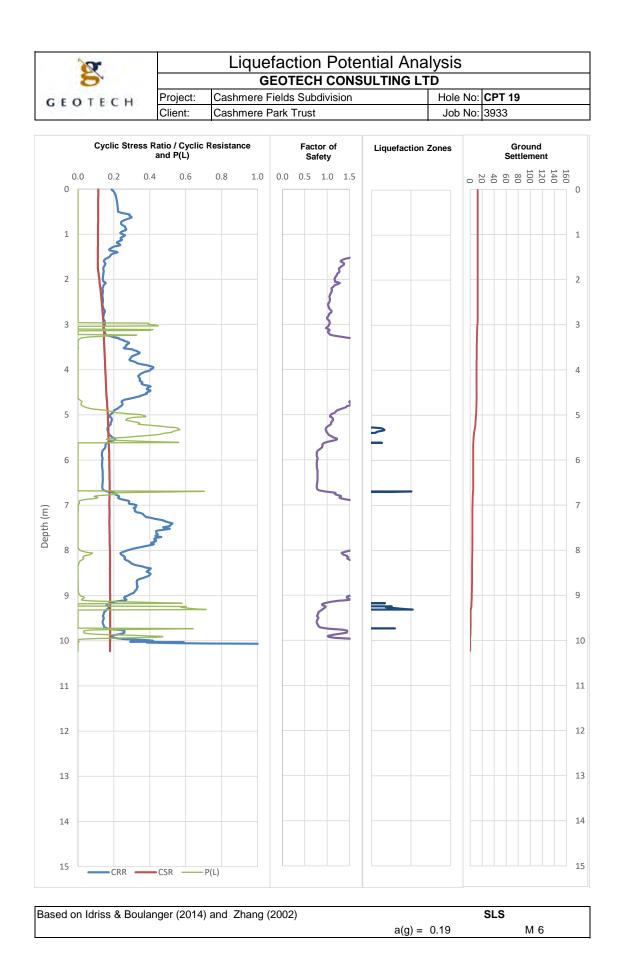


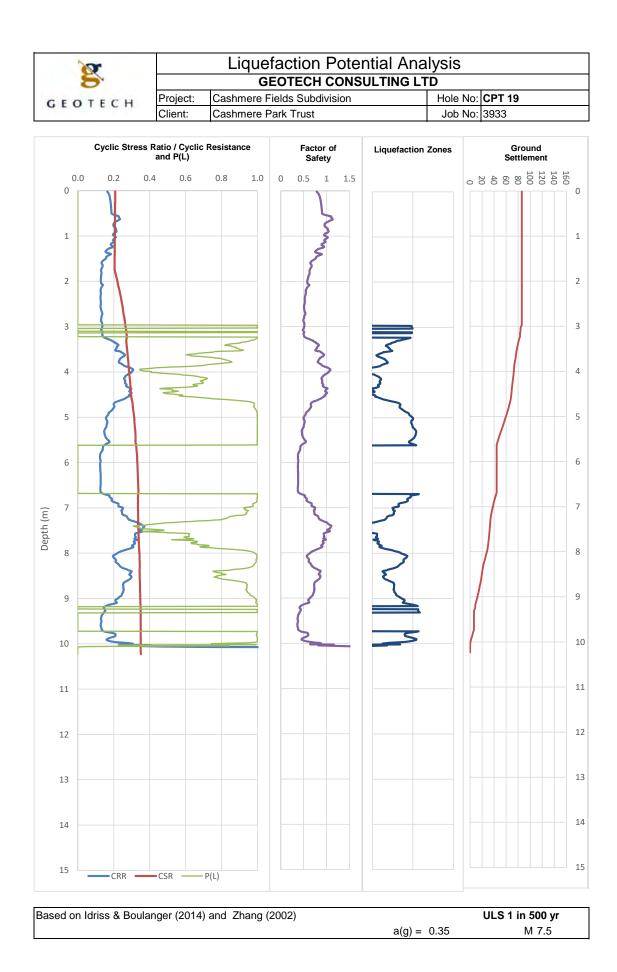






Based on Idriss & Boulanger (2014) and Zhang (2002)	SLS				
	a(g) = 0.19	M 6			





Based on Idriss & Boulanger (2014) and Zhang (2002)	ULS 1 in 500 yr		
	a(g) = 0.35	M 7.5	

